A hybrid optimization approach for efficient calibration of computationally intensive hydrological models

ABSTRACT The calibration of hydrological models is formulated as a blackbox optimization problem where the only information available is the objective function value. Distributed hydrological models are generally computationally intensive, and their calibration may require several hours or days which can be an issue for many operational contexts. Different optimization algorithms have been developed over the years and exhibit different strengths when applied to the calibration of computationally intensive hydrological models. This paper shows how the dynamically dimensioned search (DDS) and the mesh adaptive direct search (MADS) algorithms can be combined to significantly reduce the computational time of calibrating distributed hydrological models while ensuring robustness and stability regarding the final objective function values. Five transitional features are described to adequately merge both algorithms. The hybrid approach is applied to the distributed and computationally intensive HYDROTEL model on three different river basins located in Québec (Canada).

[1]  Bryan A. Tolson,et al.  Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization , 2013 .

[2]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[3]  Charles Audet,et al.  Reducing the Number of Function Evaluations in Mesh Adaptive Direct Search Algorithms , 2012, SIAM J. Optim..

[4]  Gillian Nicole Roos,et al.  Development of the Dipole Flow and Reactive Tracer Test (DFRTT) for Aquifer Parameter Estimation , 2009 .

[5]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[6]  Hoshin Vijai Gupta,et al.  Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling , 2009 .

[7]  Lester Ingber,et al.  Simulated annealing: Practice versus theory , 1993 .

[8]  Soroosh Sorooshian,et al.  General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis , 2009 .

[9]  Charles Audet,et al.  Parallel Space Decomposition of the Mesh Adaptive Direct Search Algorithm , 2007, SIAM J. Optim..

[10]  T. Takahama,et al.  Reducing the Number of Function Evaluations in Differential Evolution by Estimated Comparison Method Using an Approximation Model with Low Accuracy , 2008 .

[11]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[12]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[13]  E. Anderson,et al.  Calibration of Conceptual Hydrologic Models for Use in River Forecasting , 2002 .

[14]  Christine A. Shoemaker,et al.  A quasi-multistart framework for global optimization of expensive functions using response surface models , 2013, J. Glob. Optim..

[15]  Hao Wang,et al.  Parameter optimization of distributed hydrological model with a modified dynamically dimensioned search algorithm , 2014, Environ. Model. Softw..

[16]  C. Perrin,et al.  A review of efficiency criteria suitable for evaluating low-flow simulations , 2012 .

[17]  Avi Ostfeld,et al.  Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions , 2014, Environ. Model. Softw..

[18]  Stéphane Alarie,et al.  Assessment of blackbox optimization methods for efficient calibration of computationally intensive hydrological models , 2014 .

[19]  Roger Moussa,et al.  Distributed Watershed Model Compatible with Remote Sensing and GIS Data. II: Application to Chaudière Watershed , 2001 .

[20]  K. Beven Rainfall-Runoff Modelling: The Primer , 2012 .

[21]  François Brissette,et al.  The hazards of split-sample validation in hydrological model calibration , 2018, Journal of Hydrology.

[22]  Charles Audet,et al.  A Survey on Direct Search Methods for Blackbox Optimization and their Applications , 2014 .

[23]  A. Rousseau,et al.  Bayesian Uncertainty Analysis of the Distributed Hydrological Model HYDROTEL , 2012 .

[24]  Bryan A. Tolson,et al.  An efficient framework for hydrologic model calibration on long data periods , 2013 .

[25]  Charles Audet,et al.  OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions , 2008, SIAM J. Optim..

[26]  Erwin Zehe,et al.  Comparison of conceptual model performance using different representations of spatial variability , 2008 .

[27]  Robert Leconte,et al.  Uncertainty of hydrological modelling in climate change impact studies in a Canadian, snow-dominated river basin , 2011 .

[28]  Bryan A. Tolson,et al.  Review of surrogate modeling in water resources , 2012 .

[29]  Pascal Côté,et al.  Comparison of Stochastic Optimization Algorithms in Hydrological Model Calibration , 2014 .

[30]  F. Brissette,et al.  Impact of parameter set dimensionality and calibration procedures on streamflow prediction at ungauged catchments , 2017 .

[31]  Masoud Asadzadeh,et al.  Parallel and Preemptable Dynamically Dimensioned Search Algorithms for Single and Multi-objective Optimization in Water Resources , 2015 .

[32]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[33]  Jeffrey G. Arnold,et al.  Soil and Water Assessment Tool Theoretical Documentation Version 2009 , 2011 .

[34]  Charles Audet,et al.  A mesh adaptive direct search algorithm for multiobjective optimization , 2009, Eur. J. Oper. Res..

[35]  Max D. Morris,et al.  Factorial sampling plans for preliminary computational experiments , 1991 .

[36]  Massimiliano Zappa,et al.  The hydrological role of snow and glaciers in alpine river basins and their distributed modeling , 2003 .

[37]  V. Singh,et al.  Mathematical Modeling of Watershed Hydrology , 2002 .

[38]  Richard Turcotte,et al.  Operational analysis of the spatial distribution and the temporal evolution of the snowpack water equivalent in southern Québec, Canada , 2007 .

[39]  Raghavan Srinivasan,et al.  Approximating SWAT Model Using Artificial Neural Network and Support Vector Machine 1 , 2009 .

[40]  Bryan A. Tolson,et al.  Reducing the computational cost of automatic calibration through model preemption , 2010 .

[41]  Christos Makropoulos,et al.  Surrogate-enhanced evolutionary annealing simplex algorithm for effective and efficient optimization of water resources problems on a budget , 2016, Environ. Model. Softw..

[42]  Hao Wang,et al.  Development of efficient and cost-effective distributed hydrological modeling tool MWEasyDHM based on open-source MapWindow GIS , 2011, Comput. Geosci..

[43]  Russell C. Eberhart,et al.  A new optimizer using particle swarm theory , 1995, MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science.

[44]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[45]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[46]  Henrik Madsen,et al.  Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives , 2003 .

[47]  Pierre-Luc Huot Évaluation de méthodes d'optimisation pour le calage efficace de modèles hydrologiques coûteux en temps de calcul , 2013 .

[48]  Roger Moussa,et al.  Implementation of an automatic calibration procedure for HYDROTEL based on prior OAT sensitivity and complementary identifiability analysis , 2014 .

[49]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[50]  Christine A. Shoemaker,et al.  Comparison of function approximation, heuristic, and derivative‐based methods for automatic calibration of computationally expensive groundwater bioremediation models , 2005 .

[51]  Christine A. Shoemaker,et al.  Efficient prediction uncertainty approximation in the calibration of environmental simulation models , 2008 .

[52]  N. McIntyre,et al.  Catchment scale hydrological modelling: a review of model types, calibration approaches and uncertainty analysis methods in the context of recent developments in technology and applications , 2011 .

[53]  Jean-Pierre Villeneuve,et al.  DISTRIBUTED WATERSHED MODEL COMPATIBLE WITH REMOTE SENSING AND GIS DATA .I : D ESCRIPTION OF MODEL , 2001 .

[54]  Marie-Amélie Boucher,et al.  Added Value of Alternative Information in Interpolated Precipitation Datasets for Hydrology , 2017 .

[55]  A. Dezetter,et al.  Selection of calibration objective fonctions in the context of rainfall-ronoff modelling in a Sudanese savannah area , 1991 .

[56]  Bryan A. Tolson,et al.  Numerical assessment of metamodelling strategies in computationally intensive optimization , 2012, Environ. Model. Softw..

[57]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[58]  Charles Audet,et al.  Improving process representation in conceptual hydrological model calibration using climate simulations , 2014 .

[59]  Soroosh Sorooshian,et al.  Optimal use of the SCE-UA global optimization method for calibrating watershed models , 1994 .

[60]  Bryan A. Tolson,et al.  Dynamically dimensioned search algorithm for computationally efficient watershed model calibration , 2007 .

[61]  G. Gary Wang,et al.  Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions , 2010 .

[62]  S. Ricard,et al.  Global Calibration of Distributed Hydrological Models for Large-Scale Applications , 2013 .

[63]  Charles Audet,et al.  Derivative-Free and Blackbox Optimization , 2017 .

[64]  S. Sen,et al.  First Report of Alternaria dianthicola Causing Leaf Blight on Withania somnifera from India. , 2007, Plant disease.

[65]  Jeffrey G. Arnold,et al.  Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations , 2007 .

[66]  Charles Audet,et al.  A MADS Algorithm with a Progressive Barrier for Derivative-Free Nonlinear Programming , 2007 .

[67]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[68]  Christine A. Shoemaker,et al.  Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation , 2007 .

[69]  Christodoulos A. Floudas,et al.  Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO , 2016, Eur. J. Oper. Res..

[70]  Reha Uzsoy,et al.  Experimental Evaluation of Heuristic Optimization Algorithms: A Tutorial , 2001, J. Heuristics.