Deep learning‐based multi‐class damage detection for autonomous post‐disaster reconnaissance

[1]  Yashon O. Ouma,et al.  Pothole detection on asphalt pavements from 2D-colour pothole images using fuzzy c-means clustering and morphological reconstruction , 2017 .

[2]  Oral Büyüköztürk,et al.  Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks , 2017, Comput. Aided Civ. Infrastructure Eng..

[3]  Eduardo Zalama Casanova,et al.  Road Crack Detection Using Visual Features Extracted by Gabor Filters , 2014, Comput. Aided Civ. Infrastructure Eng..

[4]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[5]  Elisa Bertino,et al.  Pruning deep convolutional neural networks for efficient edge computing in condition assessment of infrastructures , 2019, Comput. Aided Civ. Infrastructure Eng..

[6]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7]  Sergey Ioffe,et al.  Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , 2016, AAAI.

[8]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[9]  ChaYoung-Jin,et al.  Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks , 2017 .

[10]  Oral Büyüköztürk,et al.  Autonomous Structural Visual Inspection Using Region‐Based Deep Learning for Detecting Multiple Damage Types , 2018, Comput. Aided Civ. Infrastructure Eng..

[11]  Yang Liu,et al.  Automated Pixel‐Level Pavement Crack Detection on 3D Asphalt Surfaces Using a Deep‐Learning Network , 2017, Comput. Aided Civ. Infrastructure Eng..

[12]  Yimin D. Zhang,et al.  Road Crack Detection Using Deep Convolutional Neural Network and Adaptive Thresholding , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[13]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Yun Liu,et al.  Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring , 2014, Sensors.

[15]  Sung-Han Sim,et al.  Crack and Noncrack Classification from Concrete Surface Images Using Machine Learning , 2019 .

[16]  Ikhlas Abdel-Qader,et al.  ANALYSIS OF EDGE-DETECTION TECHNIQUES FOR CRACK IDENTIFICATION IN BRIDGES , 2003 .

[17]  Bernt Schiele,et al.  Learning Non-maximum Suppression , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Shirley J. Dyke,et al.  Visual data classification in post-event building reconnaissance , 2018 .

[19]  Siddhartha Kumar Khaitan,et al.  Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection , 2017 .

[20]  Luh-Maan Chang,et al.  Support-vector-machine-based method for automated steel bridge rust assessment , 2012 .

[21]  Shuji Hashimoto,et al.  Fast crack detection method for large-size concrete surface images using percolation-based image processing , 2010, Machine Vision and Applications.

[22]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Reginald DesRoches,et al.  Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments , 2012, Adv. Eng. Informatics.

[24]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[25]  Paul Fieguth,et al.  Computer Vision Techniques for Automatic Structural Assessment of Underground Pipes , 2003 .

[26]  Vikram Pakrashi,et al.  Texture Analysis Based Damage Detection of Ageing Infrastructural Elements , 2013, Comput. Aided Civ. Infrastructure Eng..

[27]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[28]  Manuel Avila,et al.  2D image based road pavement crack detection by calculating minimal paths and dynamic programming , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[29]  Sylvie Chambon,et al.  Automatic Road Defect Detection by Textural Pattern Recognition Based on AdaBoost , 2012, Comput. Aided Civ. Infrastructure Eng..

[30]  Qingquan Li,et al.  CrackTree: Automatic crack detection from pavement images , 2012, Pattern Recognit. Lett..

[31]  Christian Koch,et al.  Pothole detection in asphalt pavement images , 2011, Adv. Eng. Informatics.

[32]  Mohammad R. Jahanshahi,et al.  NB-CNN: Deep Learning-Based Crack Detection Using Convolutional Neural Network and Naïve Bayes Data Fusion , 2018, IEEE Transactions on Industrial Electronics.

[33]  Ezzatollah Salari,et al.  Beamlet Transform‐Based Technique for Pavement Crack Detection and Classification , 2010, Comput. Aided Civ. Infrastructure Eng..

[34]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Khalid M. Mosalam,et al.  Deep Transfer Learning for Image‐Based Structural Damage Recognition , 2018, Comput. Aided Civ. Infrastructure Eng..