Revealing the base pair stepping dynamics of nucleic acid motor proteins with optical traps.

Nearly all aspects of nucleic acid metabolism involve motor proteins. This diverse group of enzymes, which includes DNA and RNA polymerases, the ribosome, helicases, and other translocases, converts chemical energy in the form of bond hydrolysis into concerted motion along nucleic acid filaments. The direct observation of this motion at its fundamental distance scale of one base pair has required the development of new ultrasensitive techniques. Recent advances in optical traps have now made these length scales, once the exclusive realm of crystallographic techniques, accessible. Several new studies using optical traps have revealed for the first time how motor proteins translocate along their substrates in a stepwise fashion. Though these techniques have only begun to be applied to biological problems, the unprecedented access into nucleic acid motor protein movement has already provided important insights into their mechanism. In this perspective, we review these advances and offer our view on the future of this exciting development.

[1]  W. Greenleaf,et al.  High-resolution, single-molecule measurements of biomolecular motion. , 2007, Annual review of biophysics and biomolecular structure.

[2]  V. Rao,et al.  The DNA translocating ATPase of bacteriophage T4 packaging motor. , 2006, Journal of molecular biology.

[3]  S. Kowalczykowski,et al.  Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. , 1989, Biochemistry.

[4]  A. Mehta,et al.  Single-molecule biomechanics with optical methods. , 1999, Science.

[5]  Christoph F. Schmidt,et al.  Direct observation of kinesin stepping by optical trapping interferometry , 1993, Nature.

[6]  Jens Michaelis,et al.  Mechanism of Force Generation of a Viral DNA Packaging Motor , 2005, Cell.

[7]  I. Tinoco,et al.  RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP , 2006, Nature.

[8]  C. Cameron,et al.  Multiple Full-length NS3 Molecules Are Required for Optimal Unwinding of Oligonucleotide DNA in Vitro* , 2005, Journal of Biological Chemistry.

[9]  I. Tinoco,et al.  Simulation and analysis of single-ribosome translation , 2009, Physical biology.

[10]  A. Kwong,et al.  Structure of the hepatitis C virus RNA helicase domain , 1997, Nature Structural Biology.

[11]  L. Black,et al.  Mechanistic Coupling of Bacteriophage T4 DNA Packaging to Components of the Replication-dependent Late Transcription Machinery* , 2006, Journal of Biological Chemistry.

[12]  G. Shivashankar,et al.  RecA polymerization on double-stranded DNA by using single-molecule manipulation: the role of ATP hydrolysis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Polly M Fordyce,et al.  Simultaneous, coincident optical trapping and single-molecule fluorescence , 2004, Nature Methods.

[14]  Carlos Bustamante,et al.  Recent advances in optical tweezers. , 2008, Annual review of biochemistry.

[15]  Carlos Bustamante,et al.  Supplemental data for : The Bacteriophage ø 29 Portal Motor can Package DNA Against a Large Internal Force , 2001 .

[16]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Dwight L. Anderson,et al.  Substrate Interactions and Promiscuity in a Viral DNA Packaging Motor , 2009, Nature.

[18]  T. Lohman,et al.  Non-hexameric DNA helicases and translocases: mechanisms and regulation , 2008, Nature Reviews Molecular Cell Biology.

[19]  Michelle D. Wang,et al.  Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Nancy R Forde,et al.  Mechanical processes in biochemistry. , 2004, Annual review of biochemistry.

[21]  C. Bustamante,et al.  Ten years of tension: single-molecule DNA mechanics , 2003, Nature.

[22]  Marc C. Morais,et al.  Structure of the bacteriophage φ29 DNA packaging motor , 2000, Nature.

[23]  Polly M Fordyce,et al.  Combined optical trapping and single-molecule fluorescence , 2003, Journal of biology.

[24]  L. Bird,et al.  Crystal structure of a DExx box DNA helicase , 1996, Nature.

[25]  V. Serebrov,et al.  Periodic cycles of RNA unwinding and pausing by hepatitis C virus NS3 helicase , 2004, Nature.

[26]  S. Velankar,et al.  Crystal Structures of Complexes of PcrA DNA Helicase with a DNA Substrate Indicate an Inchworm Mechanism , 1999, Cell.

[27]  D. Wigley,et al.  Structure and mechanism of helicases and nucleic acid translocases. , 2007, Annual review of biochemistry.

[28]  David I. Stuart,et al.  A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting , 2006, Nature.

[29]  T. Ha,et al.  Bridging conformational dynamics and function using single-molecule spectroscopy. , 2006, Structure.

[30]  Wei Yang,et al.  UvrD Helicase Unwinds DNA One Base Pair at a Time by a Two-Part Power Stroke , 2006, Cell.

[31]  J. Michaelis,et al.  Mechanisms of nucleic acid translocases: lessons from structural biology and single-molecule biophysics. , 2007, Current opinion in structural biology.

[32]  R. T. Dame Single-molecule micromanipulation studies of DNA and architectural proteins. , 2008, Biochemical Society transactions.

[33]  Carlos Bustamante,et al.  Inter-Subunit Coordination in a Homomeric Ring-ATPase , 2009, Nature.

[34]  Carlos Bustamante,et al.  Exact solutions for kinetic models of macromolecular dynamics. , 2008, The journal of physical chemistry. B.

[35]  V. Serebrov,et al.  Establishing a Mechanistic Basis for the Large Kinetic Steps of the NS3 Helicase* , 2009, Journal of Biological Chemistry.

[36]  M. Rossmann,et al.  Defining molecular and domain boundaries in the bacteriophage phi29 DNA packaging motor. , 2008, Structure.

[37]  Michelle D. Wang,et al.  Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. , 2004, Physical review letters.

[38]  E. Mancini,et al.  Atomic Snapshots of an RNA Packaging Motor Reveal Conformational Changes Linking ATP Hydrolysis to RNA Translocation , 2004, Cell.

[39]  Ignacio Tinoco,et al.  How RNA unfolds and refolds. , 2008, Annual review of biochemistry.

[40]  Steven M. Block,et al.  Kinesin Moves by an Asymmetric Hand-OverHand Mechanism , 2003 .

[41]  S. Grimes,et al.  Bacteriophage φ29 DNA packaging , 2002 .

[42]  M. Schnitzer,et al.  Statistical kinetics of processive enzymes. , 1995, Cold Spring Harbor symposia on quantitative biology.

[43]  Derek N. Fuller,et al.  Single phage T4 DNA packaging motors exhibit large force generation, high velocity, and dynamic variability , 2007, Proceedings of the National Academy of Sciences.

[44]  Carlos Bustamante,et al.  Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner , 2007, Nature.

[45]  Michael G. Rossmann,et al.  The Structure of the Phage T4 DNA Packaging Motor Suggests a Mechanism Dependent on Electrostatic Forces , 2008, Cell.

[46]  Steven M. Block,et al.  Sequence-Resolved Detection of Pausing by Single RNA Polymerase Molecules , 2006, Cell.

[47]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[48]  Matthew J Lang,et al.  Interlaced optical force-fluorescence measurements for single molecule biophysics. , 2006, Biophysical journal.

[49]  Robert Landick,et al.  RNA Polymerase as a Molecular Motor , 1998, Cell.

[50]  G. Wuite,et al.  Visualizing single DNA-bound proteins using DNA as a scanning probe , 2007, Nature Methods.

[51]  Carlos Bustamante,et al.  Direct Observation of the Three-State Folding of a Single Protein Molecule , 2005, Science.

[52]  Andrew J. Spakowitz,et al.  Effect of force on mononucleosomal dynamics , 2006, Proceedings of the National Academy of Sciences.

[53]  H. Noller,et al.  mRNA Helicase Activity of the Ribosome , 2005, Cell.

[54]  C. Bustamante,et al.  The mechanochemistry of molecular motors. , 2000, Biophysical journal.

[55]  Ashley R. Carter,et al.  Stabilization of an Optical Microscope to 0.1 Nm in Three Dimensions , 2022 .

[56]  Ravindra V Dalal,et al.  Pulling on the nascent RNA during transcription does not alter kinetics of elongation or ubiquitous pausing. , 2006, Molecules and Cells.

[57]  Steven M Block,et al.  Passive all-optical force clamp for high-resolution laser trapping. , 2005, Physical review letters.

[58]  W. Gelbart,et al.  Physical chemistry of DNA viruses. , 2009, Annual review of physical chemistry.

[59]  J P Griffith,et al.  Hepatitis C virus NS3 RNA helicase domain with a bound oligonucleotide: the crystal structure provides insights into the mode of unwinding. , 1998, Structure.

[60]  Ignacio Tinoco,et al.  Following translation by single ribosomes one codon at a time , 2008, Nature.

[61]  J. Liphardt,et al.  Reversible Unfolding of Single RNA Molecules by Mechanical Force , 2001, Science.

[62]  O. Gileadi,et al.  Compaction of single DNA molecules induced by binding of integration host factor (IHF) , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[63]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[64]  Peixuan Guo,et al.  Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gp16 of bacteriophage phi 29. , 1987, Journal of molecular biology.

[65]  Martin Depken,et al.  The origin of short transcriptional pauses. , 2009, Biophysical journal.

[66]  Halina Rubinsztein-Dunlop,et al.  Optical torque on microscopic objects. , 2007, Methods in cell biology.

[67]  Scott Forth,et al.  Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection , 2007, Nature Methods.

[68]  Gijs J. L. Wuite,et al.  Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation , 2006, Nature.

[69]  C. Catalano,et al.  Biochemical characterization of bacteriophage lambda genome packaging in vitro. , 2003, Virology.

[70]  Gijs J. L. Wuite,et al.  DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway , 2005, Nucleic acids research.

[71]  Gerhard A Blab,et al.  Stretching submicron biomolecules with constant-force axial optical tweezers. , 2009, Biophysical journal.

[72]  D. Herschlag,et al.  Direct Measurement of the Full, Sequence-Dependent Folding Landscape of a Nucleic Acid , 2006, Science.

[73]  Sotaro Uemura,et al.  Peptide bond formation destabilizes Shine–Dalgarno interaction on the ribosome , 2007, Nature.

[74]  K. Schulten,et al.  Fluorescence-Force Spectroscopy Maps Two-Dimensional Reaction Landscape of the Holliday Junction , 2007, Science.

[75]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[76]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[77]  C. Catalano,et al.  Packaging of a unit-length viral genome: the role of nucleotides and the gpD decoration protein in stable nucleocapsid assembly in bacteriophage lambda. , 2008, Journal of molecular biology.

[78]  E. Schäffer,et al.  Optical tweezers with millikelvin precision of temperature-controlled objectives and base-pair resolution. , 2009, Optics express.

[79]  Carlos Bustamante,et al.  Optical-trap force transducer that operates by direct measurement of light momentum. , 2003, Methods in enzymology.

[80]  Paul Matsudaira,et al.  Detecting force-induced molecular transitions with fluorescence resonant energy transfer. , 2007, Angewandte Chemie.

[81]  S. Block,et al.  Versatile optical traps with feedback control. , 1998, Methods in enzymology.

[82]  Taekjip Ha,et al.  Spring-Loaded Mechanism of DNA Unwinding by Hepatitis C Virus NS3 Helicase , 2007, Science.

[83]  H Fujisawa,et al.  Phage DNA packaging , 1997, Genes to cells : devoted to molecular & cellular mechanisms.

[84]  S. Patel,et al.  Structure and function of hexameric helicases. , 2000, Annual review of biochemistry.

[85]  Ignacio Tinoco,et al.  Determination of thermodynamics and kinetics of RNA reactions by force , 2006, Quarterly Reviews of Biophysics.

[86]  M. Tasaka,et al.  DNA packaging ATPase of bacteriophage T3. , 1993, Virology.

[87]  Rae M. Robertson,et al.  Measurements of single DNA molecule packaging dynamics in bacteriophage lambda reveal high forces, high motor processivity, and capsid transformations. , 2007, Journal of molecular biology.

[88]  John F. Atkins,et al.  Ribosomal frameshifting in decoding antizyme mRNAs from yeast and protists to humans: close to 300 cases reveal remarkable diversity despite underlying conservation , 2007, Nucleic acids research.

[89]  K. Neuman,et al.  Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy , 2008, Nature Methods.

[90]  Ashley R. Carter,et al.  Precision surface-coupled optical-trapping assay with one-basepair resolution. , 2009, Biophysical journal.

[91]  W. Greenleaf,et al.  Single-molecule studies of RNA polymerase: motoring along. , 2008, Annual review of biochemistry.

[92]  Colin Echeverría Aitken,et al.  Translation at the single-molecule level. , 2008, Annual review of biochemistry.

[93]  M. Emmett,et al.  Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states , 2005, Nature Structural &Molecular Biology.

[94]  Mark J. Schnitzer,et al.  Kinesin hydrolyses one ATP per 8-nm step , 1997, Nature.

[95]  Michael G Rossmann,et al.  The structure of the ATPase that powers DNA packaging into bacteriophage T4 procapsids. , 2007, Molecular cell.

[96]  D. Wigley,et al.  Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. , 2000, Biochemistry.

[97]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .

[98]  M. Feiss,et al.  The bacteriophage DNA packaging motor. , 2008, Annual review of genetics.

[99]  Gabriel Waksman,et al.  Major Domain Swiveling Revealed by the Crystal Structures of Complexes of E. coli Rep Helicase Bound to Single-Stranded DNA and ADP , 1997, Cell.

[100]  Elio A. Abbondanzieri,et al.  Ubiquitous Transcriptional Pausing Is Independent of RNA Polymerase Backtracking , 2003, Cell.

[101]  J. Lakowicz,et al.  Viral DNA packaging studied by fluorescence correlation spectroscopy. , 2007, Biophysical journal.

[102]  R. Landick The regulatory roles and mechanism of transcriptional pausing. , 2006, Biochemical Society transactions.

[103]  Joshua W. Shaevitz,et al.  Backtracking by single RNA polymerase molecules observed at near-base-pair resolution , 2003, Nature.

[104]  C. Joo,et al.  Advances in single-molecule fluorescence methods for molecular biology. , 2008, Annual review of biochemistry.

[105]  T. Lohman,et al.  A nonuniform stepping mechanism for E. coli UvrD monomer translocation along single-stranded DNA. , 2007, Molecular cell.

[106]  J. Allemand,et al.  Stretching DNA and RNA to probe their interactions with proteins. , 2003, Current opinion in structural biology.

[107]  Nancy R Forde,et al.  Thermal probing of E. coli RNA polymerase off-pathway mechanisms. , 2008, Journal of molecular biology.

[108]  M. Fisher,et al.  Molecular motors: a theorist's perspective. , 2007, Annual review of physical chemistry.

[109]  P. Nelson,et al.  Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm. , 2007, Biophysical journal.

[110]  S. Smith,et al.  Polymerization and mechanical properties of single RecA-DNA filaments. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Michelle D. Wang,et al.  Mechanical disruption of individual nucleosomes reveals a reversible multistage release of DNA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[112]  Joshua W Shaevitz,et al.  Statistical kinetics of macromolecular dynamics. , 2005, Biophysical journal.