Electrically small supergain end‐fire arrays

The theory, computer simulations, and experimental measurements are presented for electrically small two-element supergain arrays with near optimal endfire gains of 7 dB. We show how the difficulties of narrow tolerances, large mismatches, low radiation efficiencies, and reduced scattering of electrically small parasitic elements are overcome by using electrically small resonant antennas as the elements in both separately driven and singly driven (parasitic) two-element electrically small supergain endfire arrays. Although rapidly increasing narrow tolerances prevent the practical realization of the maximum theoretically possible endfire gain of electrically small arrays with many elements, the theory and preliminary numerical simulations indicate that near maximum supergains are also achievable in practice for electrically small arrays with three (and possibly more) resonant elements if the decreasing bandwidth with increasing number of elements can be tolerated.

[1]  H.J. Riblet,et al.  Note on the Maximum Directivity of an Antenna , 1948, Proceedings of the IRE.

[2]  W. Walkinshaw,et al.  Theoretical treatment of short Yagi aerials , 1946 .

[3]  Hao Ling,et al.  Design of a Closely Spaced, Folded Yagi Antenna , 2006, IEEE Antennas and Wireless Propagation Letters.

[5]  G.H. Brown,et al.  Directional Antennas , 1937, Proceedings of the Institute of Radio Engineers.

[6]  Best,et al.  The lower bounds on Q for lossy electric and magnetic dipole antennas , 2004, IEEE Antennas and Wireless Propagation Letters.

[7]  H.A. Wheeler,et al.  Fundamental Limitations of Small Antennas , 1947, Proceedings of the IRE.

[8]  R. G. Medhurst,et al.  A new approach to the design of super-directive aerial arrays , 1953 .

[9]  Hao Ling,et al.  Electrically small antenna for maximising transmission into HF ground waves , 2004 .

[10]  E. Altshuler Electrically small self-resonant wire antennas optimized using a genetic algorithm , 2002 .

[11]  R. P. Haviland,et al.  Supergain antennas: possibilities and problems , 1995 .

[12]  R. L. Rogers,et al.  Folded conical helix antenna , 2001 .

[13]  A. Karlsson,et al.  Physical limitations of antennas in a lossy medium , 2004, IEEE Transactions on Antennas and Propagation.

[14]  S.R. Best,et al.  The performance properties of electrically small resonant multiple-arm folded wire antennas , 2005, IEEE Antennas and Propagation Magazine.

[15]  Nicholas Yaru,et al.  A Note on Super-Gain Antenna Arrays , 1951, Proceedings of the IRE.

[16]  Keiji Yoshida,et al.  Electrically Small Antennas with Miniaturized Impedance Matching Circuits for Semiconductor Amplifiers , 2005, IEICE Trans. Electron..

[17]  K. Sarabandi,et al.  Metamaterial Insulator Enabled Superdirective Array , 2007, IEEE Transactions on Antennas and Propagation.

[18]  T.H. O'Donnell,et al.  Electrically small superdirective arrays using parasitic elements , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[19]  de Ng Dick Bruijn,et al.  The problem of optimum antenna current distribution , 1945 .

[20]  C. W. Oseen,et al.  Die Einsteinsche Nadelstichstrahlung und die Maxwellschen Gleichungen , 1922 .

[21]  R.C. Hansen,et al.  Superconducting antennas , 1990, International Symposium on Antennas and Propagation Society, Merging Technologies for the 90's.

[22]  D. Nyquist,et al.  Parasitic array of two loaded short antennas , 1973 .

[23]  김기채 Small Antennas , 1992, Antenna and EM Modeling with MATLAB® Antenna Toolbox.

[24]  T. Kubo,et al.  Electromagnetic Fields , 2008 .

[25]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[26]  P.L. Werner,et al.  The design of miniature three-element stochastic Yagi-Uda arrays using particle swarm optimization , 2006, IEEE Antennas and Wireless Propagation Letters.

[27]  E.E. Altshuler A method for matching an antenna having a small radiation resistance to a 50-ohm coaxial line , 2005, IEEE Transactions on Antennas and Propagation.

[28]  Frank Jay,et al.  IEEE standard dictionary of electrical and electronics terms , 1984 .

[29]  A. Yaghjian,et al.  Internal Energy, Q-Energy, Poynting's Theorem, and the Stress Dyadic in Dispersive Material , 2007, IEEE Transactions on Antennas and Propagation.

[30]  Douglas B. Miron,et al.  Small Antenna Design , 2006 .

[31]  Peter P Viezbicke,et al.  Yagi antenna design , 1976 .

[32]  S. Schelkunoff A mathematical theory of linear arrays , 1943 .

[33]  S.R. Best A discussion on the quality factor of impedance matched electrically small wire antennas , 2005, IEEE Transactions on Antennas and Propagation.

[34]  A.D. Yaghjian,et al.  Impedance, bandwidth, and Q of antennas , 2003, IEEE Transactions on Antennas and Propagation.

[35]  S. Best,et al.  On the performance properties of the Koch fractal and other bent wire monopoles , 2003 .

[36]  C. Balanis Antenna theory , 1982 .

[37]  T.H. O'Donnell,et al.  A monopole superdirective array , 2005, IEEE Transactions on Antennas and Propagation.

[38]  Kamal Sarabandi,et al.  A novel approach for miniaturization of slot antennas , 2003 .

[39]  Hao Ling,et al.  Design of electrically small Yagi antenna , 2007 .

[40]  H. A. Wheeler The Radiansphere around a Small Antenna , 1959, Proceedings of the IRE.

[41]  Robert C. Hansen,et al.  Electrically Small, Superdirective, and Superconducting Antennas , 2006 .