Controlling the Dynamics of the Fuzzy Cellular Automaton Rule 90, I

Control problems on Cellular Automata (CA) models have been introduced in a rigorous mathematical framework [10]. In this paper, we attempt to apply the control theory concept to the special class of fuzzy CA for which more freedom is gained using a continuum state space. Focusing on the case of fuzzy rule 90, we investigate the possibility of finding a control u= (u 0 , u 1 , i¾? , u Ti¾? 1 ) which forces the system at a localized cell, to achieve a given desired state at time T. The problem is studied starting from an initial configuration consisting of a single seed on a zero background.

[1]  R. J. Stonier,et al.  Complex Systems: Mechanism of Adaptation , 1994 .

[2]  Angelo B. Mingarelli The Global Evolution of General Fuzzy Cellular Automata , 2006, J. Cell. Autom..

[3]  Stephen Gilmore,et al.  Combining Measurement and Stochastic Modelling to Enhance Scheduling Decisions for a Parallel Mean Value Analysis Algorithm , 2006, International Conference on Computational Science.

[4]  Samira El Yacoubi,et al.  On the Decidability of the Evolution of the Fuzzy Cellular Automaton 184 , 2006, International Conference on Computational Science.

[5]  Samira El Yacoubi,et al.  A Genetic Programming Approach to Structural Identification of Cellular Automata , 2007, J. Cell. Autom..

[6]  Stephen Wolfram,et al.  Cellular Automata And Complexity , 1994 .

[7]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[8]  S. El Yacoubi,et al.  Cellular automata modelling and spreadability , 2002 .

[9]  Max H. Garzon,et al.  Models of massive parallelism: analysis of cellular automata and neural networks , 1995 .

[10]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[11]  E. F. Codd,et al.  Cellular automata , 1968 .

[12]  G. Vichniac Simulating physics with cellular automata , 1984 .

[13]  S. El Yacoubi,et al.  A mathematical method for control problems on cellular automata models , 2008, Int. J. Syst. Sci..

[14]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[15]  Nicola Santoro,et al.  Convergence and aperiodicity in fuzzy cellular automata: Revisiting rule 90 , 1998 .

[16]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[17]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[18]  G. Mauri,et al.  Cellular automata in fuzzy backgrounds , 1997 .

[19]  Leonid A. Bunimovich,et al.  Coupled map lattices: one step forward and two steps back Physica D 86 , 1995 .

[20]  Samira El Yacoubi,et al.  Regional Controllability with Cellular Automata Models , 2002, ACRI.

[21]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[22]  Max H. Garzon,et al.  Models of Massive Parallelism , 1995, Texts in Theoretical Computer Science. An EATCS Series.