Randomized sequential importance sampling for estimating the number of perfect matchings in bipartite graphs

We introduce and study randomized sequential importance sampling algorithms for estimating the number of perfect matchings in bipartite graphs. In analyzing their performance, we establish various non-standard central limit theorems. We expect our methods to be useful for other applied problems.

[1]  Ronald L. Graham,et al.  On the permanents of complements of the direct sum of identity matrices , 1981 .

[2]  Yuguo Chen,et al.  Sequential Monte Carlo Methods for Statistical Analysis of Tables , 2005 .

[3]  Jane Zundel MATCHING THEORY , 2011 .

[4]  Simon Plouffe Approximations de Séries Génératrices et Quelques Conjectures , 2014 .

[5]  Bradley Efron,et al.  A simple test of independence for truncated data with applications to redshift surveys , 1992 .

[6]  Ron Goldman,et al.  Poisson approximation , 2000, Proceedings Geometric Modeling and Processing 2000. Theory and Applications.

[7]  L. Rüschendorf,et al.  A general limit theorem for recursive algorithms and combinatorial structures , 2004 .

[8]  Fan Chung Graham,et al.  Permanental generating functions and sequential importance sampling , 2019, Adv. Appl. Math..

[9]  B. McCarl,et al.  Economics , 1870, The Indian medical gazette.

[10]  B. Pittel Normal convergence problem? Two moments and a recurrence may be the clues , 1999 .

[11]  Ravindra B. Bapat Permanents in probability and statistics , 1990 .

[12]  Shie Mannor,et al.  A Tutorial on the Cross-Entropy Method , 2005, Ann. Oper. Res..

[13]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[14]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[15]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[16]  Persi Diaconis,et al.  Sequential Importance Sampling for Estimating the Number of Perfect Matchings in Bipartite Graphs: An Ongoing Conversation with Laci , 2019, Bolyai Society Mathematical Studies.

[17]  Ralph Neininger,et al.  Refined quicksort asymptotics , 2012, Random Struct. Algorithms.

[18]  Hsien-Kuei Hwang,et al.  Phase Change of Limit Laws in the Quicksort Recurrence under Varying Toll Functions , 2002, SIAM J. Comput..

[19]  Eric Vigoda,et al.  Accelerating simulated annealing for the permanent and combinatorial counting problems , 2006, SODA '06.

[20]  P. Diaconis,et al.  The sample size required in importance sampling , 2015, 1511.01437.

[21]  Olena Blumberg Cutoff for the Transposition Walk on Permutations with One-Sided Restrictions , 2012, 1202.4797.

[22]  Ronald L. Graham,et al.  Statistical Problems Involving Permutations With Restricted Positions , 1999 .

[23]  Ronald L. Graham,et al.  The Analysis of Sequential Experiments with Feedback to Subjects , 1981 .

[24]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[25]  Paul R. Milgrom,et al.  Economics, Organization and Management , 1992 .

[26]  Alexander I. Barvinok,et al.  Combinatorics and Complexity of Partition Functions , 2017, Algorithms and combinatorics.

[27]  Martin E. Dyer,et al.  On the Switch Markov Chain for Perfect Matchings , 2015, SODA.

[28]  Persi Diaconis,et al.  A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees , 2011, Internet Math..