Effects of cover diffusive properties on the components of greenhouse solar radiation.

[1]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[2]  R.E.E. Jongschaap,et al.  Simulating seasonal patterns of increased greenhouse crop production by conversion of direct radiation into diffuse radiation , 2006 .

[3]  D. Waaijenberg,et al.  Design, construction and maintenance of greenhouse structures , 2006 .

[4]  R.E.E. Jongschaap,et al.  Filtering natural light by the greenhouse covering using model simulations - more production and better quality by diffuse light , 2006 .

[5]  E. Espí,et al.  New Ultrathermic Films for Greenhouse Covers , 2006 .

[6]  Gernot M. Wallner,et al.  Aging of polymeric films for transparent insulation wall applications , 2005 .

[7]  J. Deltour,et al.  Diffusion of radiation transmitted through dry and condensate covered transmitting materials , 2005 .

[8]  Tariq Muneer,et al.  Comparative Study of Four Shadow Band Diffuse Irradiance Correction Algorithms for Almerı́a, Spain , 2004 .

[9]  J. Deltour,et al.  Angular dependence of forward scattering induced by condensate on greenhouse cladding materials , 2003 .

[10]  D. Yakir,et al.  Increased growth of young citrus trees under reduced radiation load in a semi-arid climate. , 2003, Journal of experimental botany.

[11]  I. Pollet,et al.  Forward scattering induced by water drops on a transmissive substrate. , 2002, Applied optics.

[12]  M.Dj. Pucar,et al.  Enhancement of ground radiation in greenhouses by reflection of direct sunlight , 2002 .

[13]  T. Vesala,et al.  Advantages of diffuse radiation for terrestrial ecosystem productivity , 2002 .

[14]  A. Antón,et al.  DIRECT AND DIFFUSE LIGHT TRANSMISSION OF INSECT-PROOF SCREENS AND PLASTIC FILMS FOR CLADDING GREENHOUSES , 2001 .

[15]  Gerald Stanhill,et al.  Global dimming: a review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences , 2001 .

[16]  S. R. Adams,et al.  Spatial variation and comparison of yields of tomatoes grown in small experimental compartments with those in large commercial units. , 2000 .

[17]  I. Pollet,et al.  Laboratory measurements of PAR transmittance of wet and dry greenhouse cladding materials , 1999 .

[18]  U. M. Peiper,et al.  A Model Greenhouse for Testing the Role of Condensation, Dust and Dirt on the Solar Radiation Transmissivity of Greenhouse Cladding Materials , 1998 .

[19]  J. J. Hanan Greenhouses: Advanced Technology for Protected Horticulture , 1997 .

[20]  Richard H. Grant,et al.  Obscured Overcast Sky Radiance Distributions for Ultraviolet and Photosynthetically Active Radiation , 1997 .

[21]  A. P. Papadopoulos,et al.  The influence of plant spacing on light interception and use in greenhouse tomato (Lycopersicon esculentum Mill.): A review , 1997 .

[22]  Simon Pearson,et al.  Radiation Transmission and Fluorescence of Nine Greenhouse Cladding Materials , 1995 .

[23]  L. Alados-Arboledas,et al.  On shadowband correction methods for diffuse irradiance measurements , 1995 .

[24]  Antonio F. Miguel,et al.  Solar Irradiation Inside a Single-span Greenhouse with Shading Screens , 1994 .

[25]  M. Hannah,et al.  Light Interception and Photosynthetic Efficiency in Some Glasshouse Crops , 1992 .

[26]  K. Kurata TWO DIMENSIONAL ANALYSIS OF IRRADIANCE DISTRIBUTION AT CANOPY FOLIAGE IN RELATION TO THE DIFFUSIVITY OF FILMS OF PLASTIC HOUSES , 1992 .

[27]  A. Baille,et al.  A simple model for the estimation of greenhouse transmission: Influence of structures and internal equipment. , 1990 .

[28]  Brian Norton,et al.  TRANSMISSION AND FORWARD SCATTERING OF INSOLATION THROUGH PLASTIC GREENHOUSE CLADDING MATERIALS , 1989 .

[29]  C.J.T. Spitters,et al.  Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis Part II. Calculation of canopy photosynthesis , 1986 .

[30]  A. Drummond On the measurement of sky radiation , 1956 .

[31]  Shaojin Wang,et al.  Studies on thermal performances of a new greenhouse cladding material , 1999 .

[32]  G. Hammer,et al.  Radiation use efficiency increases when the diffuse component of incident radiation is enhanced under shade , 1998 .

[33]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[34]  A. Jaffrin,et al.  Role of structure, dirt and condensation on the light transmission of greenhouse covers , 1994 .

[35]  M. Hannah,et al.  LIGHT INTERCEPTION BY A ROW CROP OF GLASSHOUSE PEPPERS , 1993 .

[36]  K. E. Cockshull,et al.  The influence of shading on yield of glasshouse tomatoes , 1992 .

[37]  J. Michalsky,et al.  A simple procedure for correcting shadowband data for all sky conditions , 1990 .

[38]  H. Enoch,et al.  SUITABILITY OF GREENHOUSE BUILDING TYPES AND ROOF COVER MATERIALS FOR GROWTH OF EXPORT TOMATOES IN THE BESOR REGION OF ISRAEL : I. EFFECT ON CLIMATIC CONDITIONS , 1986 .

[39]  D. L. Critten,et al.  The use of reflectors in venetian blinds to enhance irradiance in greenhouses , 1985 .

[40]  D. L. Critten,et al.  A computer model to calculate the daily light integral and transmissivity of a greenhouse , 1983 .

[41]  G. Bot Greenhouse climate: from physical processes to a dynamic model , 1983 .

[42]  P. Basiaux,et al.  Effect of diffusion properties of greenhouse covers on light balance in the shelters , 1973 .

[43]  C. V. Smith,et al.  A contribution to glasshouse design , 1971 .

[44]  L. L. Boyd,et al.  Dynamic Simulation of Plant Growth and Environment in the Greenhouse , 1971 .

[45]  C. W. Morris,et al.  Anisotropy of clear sky diffuse solar radiation , 1971 .