Lidar-Monocular Visual Odometry with Genetic Algorithm for Parameter Optimization

Lidar-Monocular Visual Odometry (LIMO), a odometry estimation algorithm, combines camera and LIght Detection And Ranging sensor (LIDAR) for visual localization by tracking camera features as well as features from LIDAR measurements, and it estimates the motion using Bundle Adjustment based on robust key frames. For rejecting the outliers, LIMO uses semantic labelling and weights of the vegetation landmarks. A drawback of LIMO as well as many other odometry estimation algorithms is that it has many parameters that need to be manually adjusted according to the dynamic changes in the environment in order to decrease the translational errors. In this paper, we present and argue the use of Genetic Algorithm to optimize parameters with reference to LIMO and maximize LIMO's localization and motion estimation performance. We evaluate our approach on the well known KITTI odometry dataset and show that the genetic algorithm helps LIMO to reduce translation error in different datasets.

[1]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Martin Lauer,et al.  LIMO: Lidar-Monocular Visual Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[4]  Peirong Ji StereoScan : Dense 3 D Reconstruction in Real-time , 2016 .

[5]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[6]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Andrew Zisserman,et al.  MLESAC: A New Robust Estimator with Application to Estimating Image Geometry , 2000, Comput. Vis. Image Underst..

[8]  Boris Polyak,et al.  Acceleration of stochastic approximation by averaging , 1992 .

[9]  P. W. Poon,et al.  Genetic algorithm crossover operators for ordering applications , 1995, Comput. Oper. Res..

[10]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[11]  Yang Gao,et al.  Visual-LiDAR Odometry Aided by Reduced IMU , 2016, ISPRS Int. J. Geo Inf..

[12]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[13]  Andrew W. Fitzgibbon,et al.  Invariant Fitting of Two View Geometry , 2003, BMVC.

[14]  Roland Siegwart,et al.  Fusion of IMU and Vision for Absolute Scale Estimation in Monocular SLAM , 2011, J. Intell. Robotic Syst..

[15]  Adarsh Sehgal,et al.  Deep Reinforcement Learning Using Genetic Algorithm for Parameter Optimization , 2019, 2019 Third IEEE International Conference on Robotic Computing (IRC).

[16]  Igor Cvisic SOFT-SLAM : Computationally Efficient Stereo Visual SLAM for Autonomous UAVs , 2017 .

[17]  Ashutosh Singandhupe,et al.  A Review of SLAM Techniques and Security in Autonomous Driving , 2019, 2019 Third IEEE International Conference on Robotic Computing (IRC).

[18]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Sei Ikeda,et al.  Visual SLAM algorithms: a survey from 2010 to 2016 , 2017, IPSJ Transactions on Computer Vision and Applications.

[20]  Junyu Dong,et al.  Combining SLAM with muti-spectral photometric stereo for real-time dense 3D reconstruction , 2018, ArXiv.

[21]  Andreas Geiger,et al.  Automatic camera and range sensor calibration using a single shot , 2012, 2012 IEEE International Conference on Robotics and Automation.

[22]  Kalyanmoy Deb,et al.  A Comparative Analysis of Selection Schemes Used in Genetic Algorithms , 1990, FOGA.

[23]  Luis Moreno,et al.  A Genetic Algorithm for Mobile Robot Localization Using Ultrasonic Sensors , 1999, J. Intell. Robotic Syst..

[24]  Martin Lauer,et al.  Photometric laser scanner to camera calibration for low resolution sensors , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[25]  Volker Willert,et al.  Flow-decoupled normalized reprojection error for visual odometry , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[26]  Tom Duckett A genetic algorithm for simultaneous localization and mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[27]  Wolfram Burgard,et al.  Monocular camera localization in 3D LiDAR maps , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[28]  Hung Manh La,et al.  A Genetic Algorithm for Convolutional Network Structure Optimization for Concrete Crack Detection , 2018, 2018 IEEE Congress on Evolutionary Computation (CEC).

[29]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[30]  Ji Zhang,et al.  LOAM: Lidar Odometry and Mapping in Real-time , 2014, Robotics: Science and Systems.

[31]  Mircea Nicolescu,et al.  A Genetic Approach to Training Support Vector Data Descriptors for Background Modeling in Video Data , 2007, ISVC.

[32]  Daniel Cremers Direct methods for 3D reconstruction and visual SLAM , 2017, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA).

[33]  Hung Manh La,et al.  Optimal flocking control for a mobile sensor network based a moving target tracking , 2009, 2009 IEEE International Conference on Systems, Man and Cybernetics.

[34]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[35]  Julius Ziegler,et al.  StereoScan: Dense 3d reconstruction in real-time , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[36]  Christoph Gustav Keller,et al.  Multi trajectory pose adjustment for life-long mapping , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[37]  Sinisa Segvic,et al.  Improving the Egomotion Estimation by Correcting the Calibration Bias , 2015, VISAPP.

[38]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[39]  Ivan Petrovic,et al.  Stereo odometry based on careful feature selection and tracking , 2015, 2015 European Conference on Mobile Robots (ECMR).

[40]  Ji Zhang,et al.  Visual-lidar odometry and mapping: low-drift, robust, and fast , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[41]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[42]  Martin Lauer,et al.  Robust scale estimation for monocular visual odometry using structure from motion and vanishing points , 2015, 2015 IEEE Intelligent Vehicles Symposium (IV).

[43]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[44]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.