Two-dimensional Quantum Random Walk

We analyze several families of two-dimensional quantum random walks. The feasible region (the region where probabilities do not decay exponentially with time) grows linearly with time, as is the case with one-dimensional QRW. The limiting shape of the feasible region is, however, quite different. The limit region turns out to be an algebraic set, which we characterize as the rational image of a compact algebraic variety. We also compute the probability profile within the limit region, which is essentially a negative power of the Gaussian curvature of the same algebraic variety. Our methods are based on analysis of the space-time generating function, following the methods of Pemantle and Wilson (J. Comb. Theory, Ser. A 97(1):129–161, 2002).

[1]  Andris Ambainis,et al.  One-dimensional quantum walks , 2001, STOC '01.

[2]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences II: Multiple Points of the Singular Variety , 2004, Combinatorics, Probability and Computing.

[3]  J. Stillwell,et al.  Plane Algebraic Curves , 1986 .

[4]  Norio Konno,et al.  Localization of two-dimensional quantum walks , 2004 .

[5]  Mark C. Wilson,et al.  Asymptotics of Multivariate Sequences: I. Smooth Points of the Singular Variety , 2002, J. Comb. Theory, Ser. A.

[6]  Aharonov,et al.  Quantum random walks. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[7]  Etsuo Segawa,et al.  One-dimensional three-state quantum walk. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  R. J. Walker Algebraic curves , 1950 .

[9]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[10]  R. Stanley What Is Enumerative Combinatorics , 1986 .

[11]  Roderick Wong,et al.  Asymptotic approximations of integrals , 1989, Classics in applied mathematics.

[12]  Norio Konno,et al.  Limit distributions of two-dimensional quantum walks , 2008, 0802.2749.

[13]  J. Tougeron,et al.  Idéaux et fonctions différentiables. I , 1968 .

[14]  Mourad E. H. Ismail,et al.  Three routes to the exact asymptotics for the one-dimensional quantum walk , 2003, quant-ph/0303105.

[15]  Mark C. Wilson,et al.  Twenty Combinatorial Examples of Asymptotics Derived from Multivariate Generating Functions , 2005, SIAM Rev..

[16]  I. Goulden,et al.  Combinatorial Enumeration , 2004 .

[17]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[18]  R. Pemantle,et al.  Tilings, groves and multiset permutations: asympotics of rational generating functions whose pole set includes a cone , 2008 .

[19]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[20]  M. Atiyah,et al.  Lacunas for hyperbolic differential operators with constant coefficients I , 1970 .

[21]  Robin Pemantle,et al.  Quantum random walks in one dimension via generating functions , 2007 .

[22]  N. Bleistein,et al.  Asymptotic Expansions of Integrals , 1975 .

[23]  Barry C. Sanders,et al.  Quantum walks in higher dimensions , 2002 .