Emergent Group Dynamics Governed by Regulatory Cells Produce a Robust Primary T Cell Response

The currently accepted paradigm for the primary T cell response is that effector T cells commit to autonomous developmental programs. This concept is based on several experiments that have demonstrated that the dynamics of a T cell response is largely determined shortly after antigen exposure and that T cell dynamics do not depend on the level and duration of antigen stimulation. Another experimental study has also shown that T cell responses are robust to variations in antigen-specific precursor frequency.Various mathematical models have corroborated the first result that programmed T cell responses are insensitive to the level of antigen stimulation. However, this paper proposes that programmed responses do not entirely explain the robustness of T cell dynamics to variations in precursor frequency. This work studies the hypothesis that the dynamics of a T cell response may also be governed by a feedback loop involving adaptive regulatory cells rather than by intrinsic developmental programs.We formulate two mathematical models based on T cell developmental programs. In one model, effector cells undergo a fixed number of divisions before dying. In the second model, effector cells live for a fixed time during which they may divide. The study of these models suggests that developmental programs are not sufficiently robust as they produce an immune response that directly scales with precursor frequencies. Consequently, we derive a third model based on the principle that adaptive regulatory T cells develop in the course of an immune response and suppress effector cells. Our simulations show that this feedback mechanism responds robustly over a range of at least four orders of magnitude of precursor frequencies.We conclude that the proliferation program paradigm does not entirely capture the observed robustness of T cell responses to variations in precursor frequency. We propose an alternative mechanism by which the primary T cell response is governed by an emergent group dynamic and not by individual T cell programs.

[1]  Jorge Carneiro,et al.  How Regulatory CD25+CD4+ T Cells Impinge on Tumor Immunobiology: The Differential Response of Tumors to Therapies , 2007, The Journal of Immunology.

[2]  Matthew D. H. Lay,et al.  Killer T cells regulate antigen presentation for early expansion of memory, but not naive, CD8+ T cell , 2007, Proceedings of the National Academy of Sciences.

[3]  C. Janeway Immunobiology: The Immune System in Health and Disease , 1996 .

[4]  Jorge Carneiro,et al.  Inverse correlation between the incidences of autoimmune disease and infection predicted by a model of T cell mediated tolerance. , 2004, Journal of autoimmunity.

[5]  Susan M. Kaech,et al.  Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naïve cells , 2001, Nature Immunology.

[6]  Stephen P. Schoenberger,et al.  Dynamic programming of CD8+ T lymphocyte responses , 2003, Nature Immunology.

[7]  Alan S. Perelson,et al.  Increased Turnover of T Lymphocytes in HIV-1 Infection and Its Reduction by Antiretroviral Therapy , 2001, The Journal of experimental medicine.

[8]  H. Macdonald,et al.  Cutting edge: apoptosis of superantigen-activated T cells occurs preferentially after a discrete number of cell divisions in vivo. , 1999, Journal of immunology.

[9]  Stephen P. Schoenberger,et al.  Naïve CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation , 2001, Nature Immunology.

[10]  B. Woda,et al.  Lymphocyte apoptosis during the silencing of the immune response to acute viral infections in normal, lpr, and Bcl-2-transgenic mice. , 1995, The American journal of pathology.

[11]  Jorge Carneiro,et al.  Tolerance and immunity in a mathematical model of T-cell mediated suppression. , 2003, Journal of theoretical biology.

[12]  J. Bijlsma,et al.  Antigen‐specific T cell suppression by human CD4+CD25+ regulatory T cells , 2002, European journal of immunology.

[13]  Carl T. Bergstrom,et al.  Models of CD8+ responses: 1. What is the antigen-independent proliferation program. , 2003, Journal of theoretical biology.

[14]  C. Fathman,et al.  Regulation of programmed cell death following T cell activation in vivo. , 1998, International immunology.

[15]  Doron Levy,et al.  Modeling regulation mechanisms in the immune system. , 2007, Journal of theoretical biology.

[16]  Jorge Carneiro,et al.  How regulatory CD25(+)CD4(+) T cells impinge on tumor immunobiology? On the existence of two alternative dynamical classes of tumors. , 2007, Journal of theoretical biology.

[17]  Alan S. Perelson,et al.  Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection 1 , 2003, The Journal of Immunology.

[18]  Alan S. Perelson,et al.  Recruitment Times, Proliferation, and Apoptosis Rates during the CD8+ T-Cell Response to Lymphocytic Choriomeningitis Virus , 2001, Journal of Virology.

[19]  S. Ziegler,et al.  Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells. , 2003, The Journal of clinical investigation.

[20]  Rustom Antia,et al.  Estimating the Precursor Frequency of Naive Antigen-specific CD8 T Cells , 2002, The Journal of experimental medicine.

[21]  D. Wodarz,et al.  Effect of the CTL proliferation program on virus dynamics. , 2005, International immunology.

[22]  M. Colonna,et al.  Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4 , 2002, Nature Immunology.

[23]  Dejan Milutinovic,et al.  Immunological self-tolerance: lessons from mathematical modeling , 2005 .

[24]  J. Harty,et al.  Initial T cell receptor transgenic cell precursor frequency dictates critical aspects of the CD8(+) T cell response to infection. , 2007, Immunity.

[25]  J. Shimizu,et al.  Immunologic self tolerance maintained by T-cell-mediated control of self-reactive T cells: implications for autoimmunity and tumor immunity. , 2001, Microbes and infection.

[26]  T. Nomura,et al.  Regulatory T Cells and Immune Tolerance , 2008, Cell.

[27]  M. Toda,et al.  Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. , 1995, Journal of immunology.

[28]  T. Chatila,et al.  Regulatory T Cells Dynamically Control the Primary Immune Response to Foreign Antigen1 , 2007, The Journal of Immunology.

[29]  S. Ziegler,et al.  De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  J. Carneiro,et al.  Modelling T-cell-mediated suppression dependent on interactions in multicellular conjugates. , 2000, Journal of theoretical biology.

[31]  David Fouchet,et al.  A Population Dynamics Analysis of the Interaction between Adaptive Regulatory T Cells and Antigen Presenting Cells , 2008, PloS one.

[32]  F. Ronchese,et al.  Differential T Cell Function and Fate in Lymph Node and Nonlymphoid Tissues , 2002, The Journal of experimental medicine.

[33]  N. Burroughs,et al.  Regulatory T cell adjustment of quorum growth thresholds and the control of local immune responses. , 2006, Journal of theoretical biology.

[34]  Marc K Jenkins,et al.  Visualizing the first 50 hr of the primary immune response to a soluble antigen. , 2004, Immunity.

[35]  Henrique Veiga-Fernandes,et al.  Response of naïve and memory CD8+ T cells to antigen stimulation in vivo , 2000, Nature Immunology.

[36]  Jaroslav Stark,et al.  Comparing antigen-independent mechanisms of T cell regulation. , 2004, Journal of theoretical biology.

[37]  G. Pawelec,et al.  Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? , 1997, Immunology today.

[38]  Eric G. Pamer,et al.  Early Programming of T Cell Populations Responding to Bacterial Infection1 , 2000, The Journal of Immunology.

[39]  H. Cantor,et al.  Separation of helper T cells from suppressor T cells expressing different Ly components. II. Activation by antigen: after immunization, antigen-specific suppressor and helper activities are mediated by distinct T-cell subclasses , 1976, The Journal of experimental medicine.

[40]  Jorge Carneiro,et al.  Three-Cell Interactions in T Cell-Mediated Suppression? A Mathematical Analysis of Its Quantitative Implications1 , 2001, The Journal of Immunology.