Melanoma xenotransplant on the chicken chorioallantoic membrane: a complex biological model for the study of cancer cell behaviour

[1]  Y. Liu,et al.  Embryonic Stem Cells Modulate the Cancer-Permissive Microenvironment of Human Uveal Melanoma , 2019, Theranostics.

[2]  K. Smetana,et al.  Skin aging: the dermal perspective. , 2019, Clinics in dermatology.

[3]  Y. Liu,et al.  Embryonic stem cell microenvironment suppresses the malignancy of cutaneous melanoma cells by down‐regulating PI3K/AKT pathway , 2019, Cancer medicine.

[4]  M. Chovanec,et al.  The Head and Neck Squamous Cell Carcinoma Microenvironment as a Potential Target for Cancer Therapy , 2019, Cancers.

[5]  R. Pfragner,et al.  The avian chorioallantoic membrane as an alternative tool to study medullary thyroid cancer , 2019, Endocrine connections.

[6]  K. Smetana,et al.  Interleukin-6: a molecule with complex biological impact in cancer. , 2019, Histology and histopathology.

[7]  P. Kulesa,et al.  The convergent roles of CD271/p75 in neural crest-derived melanoma plasticity. , 2018, Developmental biology.

[8]  M. Bartoš,et al.  Novel approaches to study coronary vasculature development in mice , 2018, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Robert J. Griffin,et al.  Consensus guidelines for the use and interpretation of angiogenesis assays , 2018, Angiogenesis.

[10]  T. Jiang,et al.  Genome‐wide RNA‐Seq identifies Fas/FasL‐mediated tumoricidal activity of embryonic stem cells , 2018, International journal of cancer.

[11]  J. Stockert,et al.  Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. , 2018, Acta histochemica.

[12]  K. Smetana,et al.  Ecology of melanoma cell. , 2018, Histology and histopathology.

[13]  K. Ikenberg,et al.  Wnt-signaling enhances neural crest migration of melanoma cells and induces an invasive phenotype , 2018, Molecular Cancer.

[14]  K. Smetana,et al.  Fibroblasts potentiate melanoma cells in vitro invasiveness induced by UV-irradiated keratinocytes , 2018, Histochemistry and Cell Biology.

[15]  E. Rofstad,et al.  Vascular abnormalities and development of hypoxia in microscopic melanoma xenografts , 2017, Journal of Translational Medicine.

[16]  V. Sée,et al.  Magnetic Resonance Imaging for Characterization of a Chick Embryo Model of Cancer Cell Metastases , 2017, bioRxiv.

[17]  H. Abe,et al.  Highly sensitive and specific Alu-based quantification of human cells among rodent cells , 2017, Scientific Reports.

[18]  J. Joseph,et al.  A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds , 2017, Redox biology.

[19]  K. Smetana,et al.  Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: Developmental implications on reconstructive surgery , 2017, International journal of molecular medicine.

[20]  T. Urano,et al.  Precise epitope determination of the anti-vimentin monoclonal antibody V9 , 2017, Molecular medicine reports.

[21]  G. Merlino,et al.  Genetically engineered mouse models of melanoma , 2017, Cancer.

[22]  D. Spandidos,et al.  Standardization of A375 human melanoma models on chicken embryo chorioallantoic membrane and Balb/c nude mice , 2017, Oncology reports.

[23]  Michal Kolář,et al.  Intercellular crosstalk in human malignant melanoma , 2016, Protoplasma.

[24]  D. Ribatti The chick embryo chorioallantoic membrane (CAM). A multifaceted experimental model , 2016, Mechanisms of Development.

[25]  K. Smetana,et al.  Simultaneous blocking of IL-6 and IL-8 is sufficient to fully inhibit CAF-induced human melanoma cell invasiveness , 2016, Histochemistry and Cell Biology.

[26]  L. Zon,et al.  A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation , 2016, Science.

[27]  M. Chovanec,et al.  Cancer Microenvironment: What Can We Learn from the Stem Cell Niche , 2015, International journal of molecular sciences.

[28]  G. Luyten,et al.  Use of the Chick Embryo Model in Uveal Melanoma , 2015, Ocular Oncology and Pathology.

[29]  S. McKeown,et al.  Embryonic Chicken Transplantation is a Promising Model for Studying the Invasive Behavior of Melanoma Cells , 2015, Front. Oncol..

[30]  Č. Vlček,et al.  Melanoma cells influence the differentiation pattern of human epidermal keratinocytes , 2015, Molecular Cancer.

[31]  D. Ribatti The chick embryo chorioallantoic membrane as a model for tumor biology. , 2014, Experimental cell research.

[32]  Patrycja Nowak-Sliwinska,et al.  The chicken chorioallantoic membrane model in biology, medicine and bioengineering , 2014, Angiogenesis.

[33]  P. Kulesa,et al.  Dynamic Interactions between Cancer Cells and the Embryonic Microenvironment Regulate Cell Invasion and Reveal EphB6 as a Metastasis Suppressor , 2014, Molecular Cancer Research.

[34]  O. Shakhova Neural crest stem cells in melanoma development , 2014, Current opinion in oncology.

[35]  J. Lewis,et al.  The chick embryo as an expanding experimental model for cancer and cardiovascular research , 2014, Developmental dynamics : an official publication of the American Association of Anatomists.

[36]  I. Krajsová,et al.  Cultivation-dependent plasticity of melanoma phenotype , 2013, Tumor Biology.

[37]  S. Weiss,et al.  The Histone Methyltransferase EZH2 Mediates Tumor Progression on the Chick Chorioallantoic Membrane Assay, a Novel Model of Head and Neck Squamous Cell Carcinoma. , 2013, Translational oncology.

[38]  M. Dvorák,et al.  Molecular analysis of the TGF-beta controlled gene expression program in chicken embryo dermal myofibroblasts. , 2013, Gene.

[39]  P. Kulesa,et al.  Melanoma revives an embryonic migration program to promote plasticity and invasion , 2012, Pigment cell & melanoma research.

[40]  A. Navis,et al.  A series of normal stages in the development of the chick embryo. 1951. , 2012, Developmental dynamics : an official publication of the American Association of Anatomists.

[41]  B. Kong,et al.  Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line , 2011, BMC Genomics.

[42]  Yong-Yeon Cho,et al.  Embryonic stem‐cell‐preconditioned microenvironment induces loss of cancer cell properties in human melanoma cells , 2011, Pigment cell & melanoma research.

[43]  R. Rugh Experimental Embryology, a Manual of Techniques and Procedures , 2011 .

[44]  Eun Young Kim,et al.  Differences between cellular and molecular profiles of induced pluripotent stem cells generated from mouse embryonic fibroblasts. , 2010, Cellular reprogramming.

[45]  J. Arluzea,et al.  Reprogramming of melanoma cells by embryonic microenvironments. , 2009, The International journal of developmental biology.

[46]  Erin M. Conn,et al.  Evaluation of metastatic and angiogenic potentials of human colon carcinoma cells in chick embryo model systems , 2009, Clinical & Experimental Metastasis.

[47]  James P. Quigley,et al.  Chick embryo chorioallantoic membrane model systems to study and visualize human tumor cell metastasis , 2008, Histochemistry and Cell Biology.

[48]  M. Hendrix,et al.  Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[49]  Marius Raica,et al.  The chick embryo chorioallantoic membrane as a model to study tumor metastasis , 2008, Angiogenesis.

[50]  Guido Kroemer,et al.  Tumor cell metabolism: cancer's Achilles' heel. , 2008, Cancer cell.

[51]  M. Hendrix,et al.  The Epigenetic Influence of Tumor and Embryonic Microenvironments: How Different are They? , 2008, Cancer Microenvironment.

[52]  C. Lugassy,et al.  Angiotropic Melanoma and Extravascular Migratory Metastasis: A Review , 2007, Advances in anatomic pathology.

[53]  M. Bizzarri,et al.  Zebrafish embryo proteins induce apoptosis in human colon cancer cells (Caco2) , 2006, Apoptosis.

[54]  M. Hendrix,et al.  The fate of human malignant melanoma cells transplanted into zebrafish embryos: Assessment of migration and cell division in the absence of tumor formation , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[55]  T. Burstyn-Cohen,et al.  Canonical Wnt activity regulates trunk neural crest delamination linking BMP/noggin signaling with G1/S transition , 2004, Development.

[56]  A. Bishop,et al.  Embryonic stem cells , 2004, Cell proliferation.

[57]  Andries Zijlstra,et al.  A quantitative analysis of rate-limiting steps in the metastatic cascade using human-specific real-time polymerase chain reaction. , 2002, Cancer research.

[58]  K. Schat,et al.  Expression of cytokine genes in Marek's disease virus‐infected chickens and chicken embryo fibroblast cultures , 2000, Immunology.

[59]  J. Ruberte,et al.  Injection technique and scanning electron microscopic study of the arterial pattern of the 20 gestation days (G20) rat fetus , 1998, Laboratory animals.

[60]  P. Traub,et al.  Species-specific recognition patterns of monoclonal antibodies directed against vimentin. , 1992, Experimental cell research.

[61]  Kokorin In,et al.  An electron microscopic study of D. sibiricus contrasted with phosphowolframic acid , 1968 .

[62]  V. Hamburger,et al.  A series of normal stages in the development of the chick embryo , 1951, Journal of morphology.

[63]  A. W. Grabau A REVISED CLASSIFICATION OF THE NORTH AMERICAN LOWER PALEOZOIC. , 1909, Science.

[64]  Novel Approaches , 2021, Research Handbook on Intellectual Capital and Business.

[65]  K. Smetana,et al.  Isolation of Normal Fibroblasts and Their Cancer-Associated Counterparts (CAFs) for Biomedical Research. , 2019, Methods in molecular biology.

[66]  M. Cardelli Alu PCR. , 2011, Methods in molecular biology.

[67]  D. Ribatti Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. , 2008, International review of cell and molecular biology.

[68]  I. Klepácek,et al.  Vascular pattern in the chorioallantoic membrane (CAM) after laser/photosensitive compound treatment. I. Macroscopic findings. , 1994, Folia biologica.

[69]  I. Klepácek,et al.  Ultrastructure of the peripheral vascular network of the wing of the chick embryo between the second and eight day of incubation (HH stages 18-31). , 1986, Folia morphologica.

[70]  I. Kokorin,et al.  [An electron microscopic study of D. sibiricus contrasted with phosphowolframic acid]. , 1968, Zhurnal mikrobiologii, epidemiologii, i immunobiologii.