Flexible and rigid amine-functionalized microporous frameworks based on different secondary building units: supramolecular isomerism, selective CO(2) capture, and catalysis.

We report the synthesis, structural characterization, and porous properties of two isomeric supramolecular complexes of ([Cd(NH2 bdc)(bphz)0.5 ]⋅DMF⋅H2 O}n (NH2 bdc=2-aminobenzenedicarboxylic acid, bphz=1,2-bis(4-pyridylmethylene)hydrazine) composed of a mixed-ligand system. The first isomer, with a paddle-wheel-type Cd2 (COO)4 secondary building unit (SBU), is flexible in nature, whereas the other isomer has a rigid framework based on a μ-oxo-bridged Cd2 (μ-OCO)2 SBU. Both frameworks are two-fold interpenetrated and the pore surface is decorated with pendant -NH2 and NN functional groups. Both the frameworks are nonporous to N2 , revealed by the type II adsorption profiles. However, at 195 K, the first isomer shows an unusual double-step hysteretic CO2 adsorption profile, whereas the second isomer shows a typical type I CO2 profile. Moreover, at 195 K, both frameworks show excellent selectivity for CO2 among other gases (N2 , O2 , H2 , and Ar), which has been correlated to the specific interaction of CO2 with the -NH2 and NN functionalized pore surface. DFT calculations for the oxo-bridged isomer unveiled that the -NH2 group is the primary binding site for CO2 . The high heat of CO2 adsorption (ΔHads =37.7 kJ mol(-1) ) in the oxo-bridged isomer is realized by NH2 ⋅⋅⋅CO2 /aromatic π⋅⋅⋅CO2 and cooperative CO2 ⋅⋅⋅CO2 interactions. Further, postsynthetic modification of the -NH2 group into -NHCOCH3 in the second isomer leads to a reduced CO2 uptake with lower binding energy, which establishes the critical role of the -NH2 group for CO2 capture. The presence of basic -NH2 sites in the oxo-bridged isomer was further exploited for efficient catalytic activity in a Knoevenagel condensation reaction.

[1]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[2]  A. Matzger,et al.  Polymer-induced heteronucleation for the discovery of new extended solids. , 2006, Angewandte Chemie.

[3]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[4]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[5]  Jing Li,et al.  MOFs for CO2 capture and separation from flue gas mixtures: the effect of multifunctional sites on their adsorption capacity and selectivity. , 2013, Chemical communications.

[6]  Giovanni Luca Cascarano,et al.  Completion and refinement of crystal structures with SIR92 , 1993 .

[7]  Louis J. Farrugia,et al.  WinGX suite for small-molecule single-crystal crystallography , 1999 .

[8]  Bin Zhao,et al.  Microporous Metal−Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node , 2005 .

[9]  S. Balasubramanian,et al.  Evolution of intermolecular structure and dynamics in supercritical carbon dioxide with pressure: an ab initio molecular dynamics study. , 2007, The journal of physical chemistry. B.

[10]  D. D’Alessandro,et al.  Enhanced carbon dioxide capture upon incorporation of N,N′-dimethylethylenediamine in the metal–organic framework CuBTTri , 2011 .

[11]  P. Thallapally,et al.  Switching Kr/Xe selectivity with temperature in a metal-organic framework. , 2012, Journal of the American Chemical Society.

[12]  Hong-Cai Zhou,et al.  Selective gas adsorption and separation in metal-organic frameworks. , 2009, Chemical Society reviews.

[13]  Tatsuo C. Kobayashi,et al.  Kinetic gate-opening process in a flexible porous coordination polymer. , 2008, Angewandte Chemie.

[14]  Hong-Cai Zhou,et al.  Interpenetration control in metal–organic frameworks for functional applications , 2013 .

[15]  S. Kitagawa,et al.  New Interpenetrated Copper Coordination Polymer Frameworks having Porous Properties , 2009 .

[16]  T. Maji,et al.  High heat of hydrogen adsorption and guest-responsive magnetic modulation in a 3D porous pillared-layer coordination framework. , 2011, Chemical communications.

[17]  C. Ania,et al.  Guest-induced modification of a magnetically active ultramicroporous, gismondine-like, copper(II) coordination network. , 2008, Journal of the American Chemical Society.

[18]  S. Kitagawa,et al.  Supramolecular isomerism, framework flexibility, unsaturated metal center, and porous property of Ag(I)/Cu(I) 3,3',5,5'-tetrametyl-4,4'-bipyrazolate. , 2008, Journal of the American Chemical Society.

[19]  Anthony L. Spek,et al.  Journal of , 1993 .

[20]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[21]  Y. Chabal,et al.  Enhancing gas adsorption and separation capacity through ligand functionalization of microporous metal-organic framework structures. , 2011, Chemistry.

[22]  Y. Chabal,et al.  Mechanism of carbon dioxide adsorption in a highly selective coordination network supported by direct structural evidence. , 2013, Angewandte Chemie.

[23]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[24]  T. Maji,et al.  Exciplex formation and energy transfer in a self-assembled metal-organic hybrid system. , 2012, Chemistry.

[25]  Jun-Hao Wang,et al.  A dynamic, luminescent and entangled MOF as a qualitative sensor for volatile organic solvents and a quantitative monitor for acetonitrile vapour , 2013 .

[26]  Hiroaki Sakurai,et al.  Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions. , 2006, Angewandte Chemie.

[27]  M. P. Suh,et al.  High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. , 2010, Chemistry.

[28]  T. Maji,et al.  Temperature-Controlled Synthesis of Metal-Organic Coordination Polymers: Crystal Structure, Supramolecular Isomerism, and Porous Property , 2009 .

[29]  Jian Zhang,et al.  High and selective CO2 uptake, H2storage and methanol sensing on the amine-decorated 12-connected MOF CAU-1 , 2011 .

[30]  W. Ahn,et al.  CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis , 2008 .

[31]  Omar M. Yaghi,et al.  Metal-organic frameworks: a tale of two entanglements. , 2007, Nature materials.

[32]  C. Rao,et al.  Chiral Porous Metal–Organic Frameworks of Co(II) and Ni(II): Synthesis, Structure, Magnetic Properties, and CO2 Uptake , 2012 .

[33]  Subi J. George,et al.  Tunable emission from a porous metal-organic framework by employing an excited-state intramolecular proton transfer responsive ligand. , 2010, Chemical communications.

[34]  D. Olson,et al.  Separation of hydrocarbons with a microporous metal-organic framework. , 2006, Angewandte Chemie.

[35]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[36]  J. Atwood,et al.  Flexible (breathing) interpenetrated metal-organic frameworks for CO2 separation applications. , 2008, Journal of the American Chemical Society.

[37]  Daniel Gunzelmann,et al.  [Al4(OH)2(OCH3)4(H2N-bdc)3] x xH(2)O: a 12-connected porous metal-organic framework with an unprecedented aluminum-containing brick. , 2009, Angewandte Chemie.

[38]  J. Purewal Hydrogen Adsorption by Alkali Metal Graphite Intercalation Compounds , 2010 .

[39]  H. Müller,et al.  In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2- and CO2-storage ability. , 2010, Angewandte Chemie.

[40]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[41]  Seth M Cohen,et al.  Photochemical activation of a metal-organic framework to reveal functionality. , 2010, Angewandte Chemie.

[42]  M. Dubinin,et al.  The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces. , 1960 .

[43]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[44]  M. W. George,et al.  Selective CO2 uptake and inverse CO2/C2H2 selectivity in a dynamic bifunctional metal–organic framework , 2012 .

[45]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[46]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[47]  C. E. Webster,et al.  Molecular Dimensions for Adsorptives , 1998 .

[48]  M. Kanatzidis,et al.  An interpenetrated framework material with hysteretic CO(2) uptake. , 2010, Chemistry.

[49]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[50]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[51]  Guodong Qian,et al.  Metal-organic frameworks with functional pores for recognition of small molecules. , 2010, Accounts of chemical research.

[52]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[53]  J. Čejka,et al.  Functionalization of delaminated zeolite ITQ-6 for the adsorption of carbon dioxide. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[54]  Michele Parrinello,et al.  Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach , 2005, Comput. Phys. Commun..

[55]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[56]  Brian P. Mehl,et al.  Energy transfer dynamics in metal-organic frameworks. , 2010, Journal of the American Chemical Society.

[57]  R. Siriwardane,et al.  Adsorption of CO2 on Zeolites at Moderate Temperatures , 2005 .

[58]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[59]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[60]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[61]  Youssef Belmabkhout,et al.  Effect of pore expansion and amine functionalization of mesoporous silica on CO2 adsorption over a wide range of conditions , 2009 .

[62]  Perla B. Balbuena,et al.  A versatile metal-organic framework for carbon dioxide capture and cooperative catalysis. , 2012, Chemical communications.

[63]  R. Krishna,et al.  Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. , 2012, Angewandte Chemie.

[64]  S. Kitagawa,et al.  Three-dimensional porous coordination polymer functionalized with amide groups based on tridentate ligand: selective sorption and catalysis. , 2007, Journal of the American Chemical Society.

[65]  G. Shimizu,et al.  An amine-functionalized metal organic framework for preferential CO(2) adsorption at low pressures. , 2009, Chemical communications.

[66]  P. K. Bharadwaj,et al.  A dynamic open framework exhibiting guest- and/or temperature-induced bicycle-pedal motion in single-crystal to single-crystal transformation. , 2011, Inorganic chemistry.

[67]  T. Maji,et al.  Versatile functionalities in MOFs assembled from the same building units: interplay of structural flexibility, rigidity and regularity , 2010 .

[68]  P. K. Bharadwaj,et al.  Direct crystallographic observation of catalytic reactions inside the pores of a flexible coordination polymer. , 2012, Chemistry.

[69]  Sangil Kim,et al.  Tailoring pore properties of MCM-48 silica for selective adsorption of CO2. , 2005, The journal of physical chemistry. B.

[70]  W. Smith,et al.  Chromophore containing bipyridyl ligands. Part 1: supramolecular solid-state structure of Ag(I) complexes , 2005 .

[71]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[72]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[73]  Shuyan Song,et al.  An active-site-accessible porous metal-organic framework composed of triangular building units: preparation, catalytic activity and magnetic property. , 2012, Chemical communications.

[74]  T. Maji,et al.  Selective carbon dioxide uptake and crystal-to-crystal transformation: porous 3D framework to 1D chain triggered by conformational change of the spacer , 2012 .

[75]  M. W. George,et al.  Irreversible network transformation in a dynamic porous host catalyzed by sulfur dioxide. , 2013, Journal of the American Chemical Society.

[76]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[77]  Seth M. Cohen,et al.  Postsynthetic ligand and cation exchange in robust metal-organic frameworks. , 2012, Journal of the American Chemical Society.

[78]  D. Olson,et al.  Microporous Metal–Organic Frameworks with High Gas Sorption and Separation Capacity , 2007 .