Gene regulatory network inference in long-lived C. elegans reveals modular properties that are predictive of novel aging genes

[1]  E. Miska,et al.  High-Throughput Quantitative RT-PCR in Single and Bulk C. elegans Samples Using Nanofluidic Technology , 2020, Journal of visualized experiments : JoVE.

[2]  Neda Bagheri,et al.  Network inference performance complexity: a consequence of topological, experimental and algorithmic determinants , 2019, Bioinform..

[3]  Ralf Takors,et al.  A guide to gene regulatory network inference for obtaining predictive solutions: Underlying assumptions and fundamental biological and data constraints , 2018, Biosyst..

[4]  Yijie Wang,et al.  Reprogramming of regulatory network using expression uncovers sex-specific gene regulation in Drosophila , 2018, Nature Communications.

[5]  Pauliina Ilmonen,et al.  Gene regulatory network inference from sparsely sampled noisy data , 2018, Nature Communications.

[6]  Phan Nguyen,et al.  Time-lagged Ordered Lasso for network inference , 2018, BMC Bioinformatics.

[7]  Attila Balint,et al.  Systematic analysis of complex genetic interactions , 2018, Science.

[8]  Dayanne M. Castro,et al.  Leveraging chromatin accessibility for transcriptional regulatory network inference in T Helper 17 Cells , 2018, bioRxiv.

[9]  Mark Gerstein,et al.  The ModERN Resource: Genome-Wide Binding Profiles for Hundreds of Drosophila and Caenorhabditis elegans Transcription Factors , 2017, Genetics.

[10]  João Pedro de Magalhães,et al.  Human Ageing Genomic Resources: new and updated databases , 2017, Nucleic Acids Res..

[11]  Jason D. Buenrostro,et al.  Chromatin accessibility dynamics reveal novel functional enhancers in C. elegans , 2017, bioRxiv.

[12]  Roger Guimerà,et al.  Consistencies and inconsistencies between model selection and link prediction in networks. , 2017, Physical review. E.

[13]  Alessandro Vullo,et al.  Ensembl 2017 , 2016, Nucleic Acids Res..

[14]  C. Myers,et al.  A gene‐centered C. elegans protein–DNA interaction network provides a framework for functional predictions , 2016, Molecular systems biology.

[15]  Adam P. Rosebrock,et al.  A global genetic interaction network maps a wiring diagram of cellular function , 2016, Science.

[16]  Renee M. Brielmann,et al.  E2F coregulates an essential HSF developmental program that is distinct from the heat-shock response , 2016, Genes & development.

[17]  Carlos López-Otín,et al.  Metabolic Control of Longevity , 2016, Cell.

[18]  G. A. Lemieux,et al.  Investigating Connections between Metabolism, Longevity, and Behavior in Caenorhabditis elegans , 2016, Trends in Endocrinology & Metabolism.

[19]  Joshua D. Starmer,et al.  Detecting broad domains and narrow peaks in ChIP-seq data with hiddenDomains , 2016, BMC Bioinformatics.

[20]  Wentao Yang,et al.  WormExp: a web-based application for a Caenorhabditis elegans-specific gene expression enrichment analysis , 2016, Bioinform..

[21]  J. Han,et al.  A Systems Approach to Reverse Engineer Lifespan Extension by Dietary Restriction. , 2016, Cell metabolism.

[22]  Evan O. Paull,et al.  Inferring causal molecular networks: empirical assessment through a community-based effort , 2016, Nature Methods.

[23]  André L. Martins,et al.  RTFBSDB: an integrated framework for transcription factor binding site analysis , 2016, bioRxiv.

[24]  Mario L. Arrieta-Ortiz,et al.  An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network , 2015, Molecular systems biology.

[25]  Yong Yu,et al.  Identification of lipid droplet structure-like/resident proteins in Caenorhabditis elegans. , 2015, Biochimica et biophysica acta.

[26]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[27]  S. Kliewer,et al.  The Nuclear Receptor DAF-12 Regulates Nutrient Metabolism and Reproductive Growth in Nematodes , 2015, PLoS genetics.

[28]  A. Maggi,et al.  Ovariectomy shortens the life span of female mice , 2015, Oncotarget.

[29]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[30]  Ana Conesa,et al.  Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series , 2014, Bioinform..

[31]  Uri Alon,et al.  Evolution of Bow-Tie Architectures in Biology , 2014, PLoS Comput. Biol..

[32]  J. Watts,et al.  Dietary supplementation of polyunsaturated fatty acids in Caenorhabditis elegans. , 2013, Journal of visualized experiments : JoVE.

[33]  James A. Thomson,et al.  Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks , 2013, PLoS Comput. Biol..

[34]  P. Mcquary,et al.  The TFEB orthologue HLH-30 regulates autophagy and modulates longevity in Caenorhabditis elegans , 2013, Nature Communications.

[35]  Ronald G. Tepper,et al.  PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-2-Mediated Development and Longevity , 2013, Cell.

[36]  Sean R. Davis,et al.  NCBI GEO: archive for functional genomics data sets—update , 2012, Nucleic Acids Res..

[37]  N. Noda,et al.  Differential Function of the Two Atg4 Homologues in the Aggrephagy Pathway in Caenorhabditis elegans* , 2012, The Journal of Biological Chemistry.

[38]  Diogo M. Camacho,et al.  Wisdom of crowds for robust gene network inference , 2012, Nature Methods.

[39]  K. Gunsalus,et al.  Networks in Caenorhabditis elegans. , 2011, Current opinion in genetics & development.

[40]  A. Meléndez,et al.  Autophagy and Lipid Metabolism Coordinately Modulate Life Span in Germline-less C. elegans , 2011, Current Biology.

[41]  Alfred L. Fisher,et al.  DAF-12 Regulates a Connected Network of Genes to Ensure Robust Developmental Decisions , 2011, PLoS genetics.

[42]  Cynthia Kenyon,et al.  The first long-lived mutants: discovery of the insulin/IGF-1 pathway for ageing , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[43]  Dean P. Jones,et al.  A network perspective on metabolism and aging. , 2010, Integrative and comparative biology.

[44]  C. Kenyon The genetics of ageing , 2010, Nature.

[45]  Roger Guimerà,et al.  Missing and spurious interactions and the reconstruction of complex networks , 2009, Proceedings of the National Academy of Sciences.

[46]  E. Birney,et al.  Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt , 2009, Nature Protocols.

[47]  David L Stern,et al.  Is Genetic Evolution Predictable? , 2009, Science.

[48]  E. Davidson,et al.  The evolution of hierarchical gene regulatory networks , 2009, Nature Reviews Genetics.

[49]  R. Lehmann,et al.  Drosophila germ-line modulation of insulin signaling and lifespan , 2008, Proceedings of the National Academy of Sciences.

[50]  A. Fraser,et al.  Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways , 2006, Nature Genetics.

[51]  Christian A. Grove,et al.  A Gene-Centered C. elegans Protein-DNA Interaction Network , 2006, Cell.

[52]  Jing Zhao,et al.  Hierarchical modularity of nested bow-ties in metabolic networks , 2006, BMC Bioinformatics.

[53]  Michael R. Green,et al.  Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation , 2006, Nature Genetics.

[54]  J Doyle,et al.  Highly optimised global organisation of metabolic networks. , 2005, Systems biology.

[55]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[56]  R. Kamath,et al.  Genome-wide RNAi screening in Caenorhabditis elegans. , 2003, Methods.

[57]  An-Ping Zeng,et al.  The Connectivity Structure, Giant Strong Component and Centrality of Metabolic Networks , 2003, Bioinform..

[58]  Cori Bargmann,et al.  Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans , 2003, Nature.

[59]  S. Carroll,et al.  Molecular mechanisms of selector gene function and evolution. , 2002, Current opinion in genetics & development.

[60]  C. Kenyon,et al.  Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling , 2001, Nature Genetics.

[61]  P. Zipperlen,et al.  Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans , 2000, Genome Biology.

[62]  T. Nakazawa,et al.  Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. , 2000, The Biochemical journal.

[63]  Y Honda,et al.  The daf‐2 gene network for longevity regulates oxidative stress resistance and Mn‐superoxide dismutase gene expression in Caenorhabditis elegans , 1999, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[64]  Cynthia Kenyon,et al.  Signals from the reproductive system regulate the lifespan of C. elegans , 1999, Nature.

[65]  Smalley He The systems approach. , 1972, Hospitals.

[66]  J. de Magalhães The scientific quest for lasting youth: prospects for curing aging. , 2014, Rejuvenation research.

[67]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[68]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .

[69]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .