Sites for Phosphates and Iron-Sulfur Thiolates in the First Membranes: 3 to 6 Residue Anion-Binding Motifs (Nests)

[1]  I. Butler,et al.  The origin of life: The properties of iron sulphide membranes , 2003 .

[2]  Douglas C. Rees,et al.  The Interface Between the Biological and Inorganic Worlds: Iron-Sulfur Metalloclusters , 2003, Science.

[3]  W. Martin,et al.  On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  B. Schoepp‐Cothenet,et al.  The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  D. Pal,et al.  New principles of protein structure: nests, eggs--and what next? , 2002, Angewandte Chemie.

[6]  V. Dani,et al.  A conformational analysis of Walker motif A [GXXXXGKT (S)] in nucleotide-binding and other proteins. , 2002, Protein engineering.

[7]  J. Watson,et al.  The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-binding regions of proteins. , 2002, Journal of molecular biology.

[8]  J. Watson,et al.  A novel main-chain anion-binding site in proteins: the nest. A particular combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions. , 2002, Journal of molecular biology.

[9]  Igor N. Berezovsky,et al.  Distinct Stages of Protein Evolution as Suggested by Protein Sequence Analysis , 2001, Journal of Molecular Evolution.

[10]  L. Vitagliano,et al.  The crystal structure of Sulfolobus solfataricus elongation factor 1α in complex with GDP reveals novel features in nucleotide binding and exchange , 2001, The EMBO journal.

[11]  A Valencia,et al.  Three-dimensional view of the surface motif associated with the P-loop structure: cis and trans cases of convergent evolution. , 2000, Journal of molecular biology.

[12]  Fraser A. Armstrong,et al.  Atomically defined mechanism for proton transfer to a buried redox centre in a protein , 2000, Nature.

[13]  M. Baltscheffsky,et al.  H+‐PPases: a tightly membrane‐bound family , 1999, FEBS letters.

[14]  H. Sticht,et al.  The structure of iron-sulfur proteins. , 1998, Progress in biophysics and molecular biology.

[15]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[16]  M. Russell,et al.  The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front , 1997, Journal of the Geological Society.

[17]  R. M. Allen,et al.  Iron−Sulfur Proteins with Nonredox Functions , 1996 .

[18]  Y. Hata,et al.  Novel zinc-binding centre in thermoacidophilic archaeal ferredoxins , 1996, Nature Structural Biology.

[19]  A. Lauwers,et al.  Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment , 1996, Origins of life and evolution of the biosphere.

[20]  R. Daniel,et al.  A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life , 1994, Journal of Molecular Evolution.

[21]  W. L. Marshall,et al.  Hydrothermal synthesis of amino acids , 1994 .

[22]  W. J. Cole,et al.  [FeS/FeS2]. A redox system for the origin of life , 1994, Origins of life and evolution of the biosphere.

[23]  J. Allen Redox control of transcription: sensors, response regulators, activators and repressers , 1993, FEBS letters.

[24]  N. Holm,et al.  Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: A perpetual phenomenon? , 1992, Naturwissenschaften.

[25]  W. Kabsch,et al.  Refined crystal structure of the triphosphate conformation of H‐ras p21 at 1.35 A resolution: implications for the mechanism of GTP hydrolysis. , 1990, The EMBO journal.

[26]  J. Reeve,et al.  Conservation of hydrogenase and polyferredoxin structures in the hyperthermophilic archaebacterium Methanothermus fervidus , 1990, Journal of bacteriology.

[27]  G. Schulz,et al.  The glycine‐rich loop of adenylate kinase forms a giant anion hole , 1986, FEBS letters.

[28]  M. Werth,et al.  Assembly of [FenSn(SR)4]2-(n: 2, 4) in Aqueous Media from Iron Salts, Thiols, and Sulfur, Sulfide, or Thiosulfate plus Rhodanese. , 1986 .

[29]  M. Werth,et al.  Assembly of [FenSn(SR)4]2− (n=2, 4) in aqueous media from iron salts, thiols, and sulfur, sulfide, or thiosulfate plus rhodanese , 1985 .

[30]  D. Hall,et al.  Role for Ferredoxins in the Origin of Life and Biological Evolution , 1971, Nature.

[31]  H. Heldt,et al.  Inorganic Pyrophosphate: Formation in Bacterial Photophosphorylation , 1966, Science.

[32]  M. O. Dayhoff,et al.  Evolution of the Structure of Ferredoxin Based on Living Relics of Primitive Amino Acid Sequences , 1966, Science.

[33]  M. Russell,et al.  On the Dissipation of Thermal and Chemical Energies on the Early Earth , 2003 .

[34]  R. M. Allen,et al.  Ironminus signSulfur Proteins with Nonredox Functions. , 1996, Chemical reviews.

[35]  J. Craig,et al.  Mineral chemistry of metal sulfides , 1978 .

[36]  S. Fox Biological Overtones of the Thermal Theory of Biochemical Origins , 1959 .