Birth of bilayered torus and torus breakdown in a piecewise-smooth dynamical system

Abstract Border-collision bifurcations arise when the periodic trajectory of a piecewise-smooth system under variation of a parameter crosses into a region with different dynamics. Considering a three-dimensional map describing the behavior of a DC/DC power converter, the Letter discusses a new type of border-collision bifurcation that leads to the birth of a “bilayered torus”. This torus consists of the union of two saddle cycles, their unstable manifolds, and a stable focus cycle. When changing the parameters, the bilayered torus transforms through a border-collision bifurcation into a resonance torus containing the stable cycle and a saddle. The Letter also presents scenarios for torus destruction through homoclinic and heteroclinic tangencies.

[1]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[2]  Alan R. Champneys,et al.  Corner collision implies border-collision bifurcation , 2001 .

[3]  Munther A Hassouneh,et al.  Robust dangerous border-collision bifurcations in piecewise smooth systems. , 2004, Physical review letters.

[4]  James A. Yorke,et al.  Border-collision bifurcations in the buck converter , 1998 .

[5]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[6]  Mitrajit Dutta,et al.  Multiple attractor bifurcations: A source of unpredictability in piecewise smooth systems , 1999 .

[7]  Erik Mosekilde,et al.  Border-Collision bifurcations and Chaotic oscillations in a piecewise-Smooth Dynamical System , 2001, Int. J. Bifurc. Chaos.

[8]  Chi K. Tse,et al.  Complex behavior in switching power converters , 2002, Proc. IEEE.

[9]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[10]  E Mosekilde,et al.  Torus breakdown in noninvertible maps. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C J Budd,et al.  Grazing and border-collision in piecewise-smooth systems: a unified analytical framework. , 2001, Physical review letters.

[12]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  J. Yorke,et al.  A transition from hopf bifurcation to chaos: Computer experiments with maps on R2 , 1978 .

[14]  Mario di Bernardo,et al.  C-bifurcations and period-adding in one-dimensional piecewise-smooth maps , 2003 .

[15]  Harry Dankowicz,et al.  Low-velocity impacts of quasiperiodic oscillations , 2002 .

[16]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[17]  A. El Aroudi,et al.  Quasi-periodic route to chaos in a PWM voltage-controlled DC-DC boost converter , 2001 .

[18]  Laura Gardini,et al.  Hicks' trade cycle revisited: cycles and bifurcations , 2003, Math. Comput. Simul..

[19]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[20]  Erik Mosekilde,et al.  Quasi-periodicity and border-collision bifurcations in a DC-DC converter with pulsewidth modulation , 2003 .

[21]  H. Dankowicz,et al.  On the origin and bifurcations of stick-slip oscillations , 2000 .

[22]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[23]  Hiroshi Kawakami,et al.  Bifurcation analysis of switched dynamical systems with periodically moving borders , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.