GISS‐E2.1: Configurations and Climatology

This paper describes the GISS‐E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS‐E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden‐Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7–3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

[1]  M. Kelley,et al.  Global Carbon Cycle and Climate Feedbacks in the NASA GISS ModelE2.1 , 2020, Journal of Advances in Modeling Earth Systems.

[2]  M. Webb,et al.  An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence , 2020, Reviews of geophysics.

[3]  J. Fasullo,et al.  Representation of Modes of Variability in Six U.S. Climate Models , 2020, Journal of Climate.

[4]  C. Hannay,et al.  Comparison of Equilibrium Climate Sensitivity Estimates From Slab Ocean, 150‐Year, and Longer Simulations , 2020, Geophysical Research Letters.

[5]  G. Schmidt,et al.  Historical (1850–2014) Aerosol Evolution and Role on Climate Forcing Using the GISS ModelE2.1 Contribution to CMIP6 , 2020, Journal of Advances in Modeling Earth Systems.

[6]  J. Thepaut,et al.  The ERA5 global reanalysis , 2020, Quarterly Journal of the Royal Meteorological Society.

[7]  M. Kelley,et al.  GISS Model E2.2: A Climate Model Optimized for the Middle Atmosphere—Model Structure, Climatology, Variability, and Climate Sensitivity , 2020, Journal of Geophysical Research: Atmospheres.

[8]  S. Bauer,et al.  The end of the anthropogenic aerosol era? , 2020 .

[9]  K. Taylor,et al.  Causes of Higher Climate Sensitivity in CMIP6 Models , 2020, Geophysical Research Letters.

[10]  William L. Smith,et al.  Toward a Consistent Definition between Satellite and Model Clear-Sky Radiative Fluxes , 2020, Journal of Climate.

[11]  Christopher J. Smith,et al.  Latest climate models confirm need for urgent mitigation , 2019, Nature Climate Change.

[12]  T. Andrews,et al.  Forcings, Feedbacks, and Climate Sensitivity in HadGEM3‐GC3.1 and UKESM1 , 2019, Journal of Advances in Modeling Earth Systems.

[13]  M. Mills,et al.  High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2) , 2019, Geophysical Research Letters.

[14]  Philip W. Jones,et al.  The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution , 2019, Journal of Advances in Modeling Earth Systems.

[15]  G. Forget,et al.  Global ocean heat transport dominated by heat export from the tropical Pacific , 2019, Nature Geoscience.

[16]  Bojan Savric,et al.  The Equal Earth map projection , 2018, Int. J. Geogr. Inf. Sci..

[17]  M. Kelley,et al.  Evaluating models' response of tropical low clouds to SST forcings using CALIPSO observations , 2018, Atmospheric Chemistry and Physics.

[18]  D. Shindell,et al.  Measurement-based assessment of health burdens from long-term ozone exposure in the United States, Europe, and China , 2018, Environmental Research Letters.

[19]  A. Bodas‐Salcedo,et al.  Critical Southern Ocean climate model biases traced to atmospheric model cloud errors , 2018, Nature Communications.

[20]  David W. A. Bourne Simulation of Data , 2018 .

[21]  G. Faluvegi,et al.  Quantified, Localized Health Benefits of Accelerated Carbon Dioxide Emissions Reductions , 2018, Nature Climate Change.

[22]  G. Schmidt,et al.  Internal Variability and Disequilibrium Confound Estimates of Climate Sensitivity From Observations , 2018 .

[23]  Muyin Wang,et al.  Surface air temperature , 2018 .

[24]  G. Faluvegi,et al.  Evaluating Modeled Impact Metrics for Human Health, Agriculture Growth, and Near‐Term Climate , 2017 .

[25]  Dean N. Williams,et al.  Enabling Reanalysis Research Using the Collaborative REAnalysis Technical Environment (CREATE) , 2017 .

[26]  D. S. Ward,et al.  Integrative analysis of desert dust size and abundance suggests less dust climate cooling. , 2017, Nature geoscience.

[27]  E. Hawkins,et al.  Estimating Changes in Global Temperature since the Preindustrial Period , 2017 .

[28]  Larry W. Thomason,et al.  A global space-based stratospheric aerosol climatology: 1979–2016 , 2017 .

[29]  Thomas M. Smith,et al.  Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons , 2017 .

[30]  Johannes W. Kaiser,et al.  Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015) , 2017 .

[31]  Cecile Hannay,et al.  Practice and philosophy of climate model tuning across six U.S. modeling centers. , 2017, Geoscientific model development.

[32]  William B. Rossow,et al.  The International Satellite Cloud Climatology Project H-Series climate data record product , 2017 .

[33]  J. Lamarque,et al.  Global Atmospheric Chemistry – Which Air Matters , 2017 .

[34]  Jeffery R. Scott,et al.  Role of the ocean's AMOC in setting the uptake efficiency of transient tracers , 2017, Geophysical research letters.

[35]  M. Kelley,et al.  Interactive nature of climate change and aerosol forcing , 2017, Journal of geophysical research. Atmospheres : JGR.

[36]  Meng Li,et al.  Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS) , 2017 .

[37]  D. S. Ward,et al.  Integrative analysis of desert dust size and abundance suggests less dust climate cooling. , 2017, Nature geoscience.

[38]  Jeffery R. Scott,et al.  The dependence of the ocean’s MOC on mesoscale eddy diffusivities: A model study , 2017 .

[39]  Kevin E. Trenberth,et al.  Atlantic meridional heat transports computed from balancing Earth's energy locally , 2017 .

[40]  the using in situ , 2017 .

[41]  S. Klein,et al.  Impact of decadal cloud variations on the Earth/'s energy budget , 2016 .

[42]  D. R. Watts,et al.  Mean Antarctic Circumpolar Current transport measured in Drake Passage , 2016 .

[43]  B. Cook,et al.  Ocean–atmosphere interactions modulate irrigation's climate impacts , 2016 .

[44]  D. Waliser,et al.  Characterizing and understanding systematic biases in the vertical structure of clouds in CMIP5/CFMIP2 models , 2016 .

[45]  Haifeng Qian,et al.  Stratospheric Temperature Climate Data Record from Merged SSU and AMSU-A Observations , 2016 .

[46]  S. Bauer,et al.  Evaluating secondary inorganic aerosols in three dimensions , 2016 .

[47]  Odele Coddington,et al.  A Solar Irradiance Climate Data Record , 2016 .

[48]  S. Bauer,et al.  Role of Atmospheric Chemistry in the Climate Impacts of Stratospheric Volcanic Injections , 2016 .

[49]  H. Chepfer,et al.  Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO , 2016 .

[50]  Carl A. Mears,et al.  Sensitivity of Satellite-Derived Tropospheric Temperature Trends to the Diurnal Cycle Adjustment , 2016 .

[51]  L. Murray Lightning NOx and Impacts on Air Quality , 2016, Current Pollution Reports.

[52]  T. Storelvmo,et al.  Observational constraints on mixed-phase clouds imply higher climate sensitivity , 2015, Science.

[53]  Bengamin I. Moat,et al.  Atlantic meridional overturning circulation observed by the RAPID-MOCHA-WBTS (RAPID-Meridional Overturning Circulation and Heatflux Array-Western Boundary Time Series) array at 26N from 2004 to 2015 , 2016 .

[54]  M. Webb,et al.  Mechanisms of the Negative Shortwave Cloud Feedback in Middle to High Latitudes , 2016 .

[55]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[56]  M. Zelinka,et al.  An observational radiative constraint on hydrologic cycle intensification , 2015, Nature.

[57]  I. Aleinov,et al.  Variability of Phenology and Fluxes of Water and Carbon with Observed and Simulated Soil Moisture in the Ent Terrestrial Biosphere Model (Ent TBM Version 1.0.1.0.0) , 2015 .

[58]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[59]  Veronika Eyring,et al.  Evolving Obs4MIPs to Support Phase 6 of the Coupled Model Intercomparison Project (CMIP6) , 2015 .

[60]  G. Cesana,et al.  Multimodel evaluation of cloud phase transition using satellite and reanalysis data , 2015 .

[61]  Audrey B. Wolf,et al.  Constraints on Cumulus Parameterization from Simulations of Observed MJO Events , 2015 .

[62]  Robert Pincus,et al.  Radiative flux and forcing parameterization error in aerosol‐free clear skies , 2015, Geophysical research letters.

[63]  Bengamin I. Moat,et al.  Measuring the Atlantic Meridional Overturning Circulation at 26°N , 2015 .

[64]  Stanley P. Sander,et al.  NASA Data Evaluation: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies , 2014 .

[65]  Michael J. Puma,et al.  Irrigation as an historical climate forcing , 2014, Climate Dynamics.

[66]  C. Deser,et al.  Evaluating Modes of Variability in Climate Models , 2014 .

[67]  Petra Döll,et al.  A global data set of the extent of irrigated land from 1900 to 2005 , 2014 .

[68]  Duane E. Waliser,et al.  Satellite Observations for CMIP5: The Genesis of Obs4MIPs , 2014 .

[69]  J. Hansen,et al.  CMIP5 historical simulations (1850–2012) with GISS ModelE2 , 2014 .

[70]  D. Rind,et al.  The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations , 2014 .

[71]  William M. Putman,et al.  Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive , 2014 .

[72]  Richard J. Blakeslee,et al.  Gridded lightning climatology from TRMM-LIS and OTD: Dataset description , 2014 .

[73]  D. Shindell,et al.  Anthropogenic and Natural Radiative Forcing , 2014 .

[74]  G. Cesana,et al.  Evaluation of the cloud thermodynamic phase in a climate model using CALIPSO‐GOCCP , 2013 .

[75]  L. Nazarenko,et al.  Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100 , 2013 .

[76]  A. Romanou,et al.  Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model , 2013 .

[77]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[78]  J. Lamarque,et al.  Evaluation of ACCMIP outgoing longwave radiation from tropospheric ozone using TES satellite observations , 2013 .

[79]  E. Guilyardi,et al.  ENSO representation in climate models: from CMIP3 to CMIP5 , 2013, Climate Dynamics.

[80]  Reto Knutti,et al.  Climate model genealogy: Generation CMIP5 and how we got there , 2013 .

[81]  M. Bierkens,et al.  Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources , 2013 .

[82]  Watson W. Gregg,et al.  Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation , 2013 .

[83]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[84]  B. Cook,et al.  The response of the South Asian Summer Monsoon circulation to intensified irrigation in global climate model simulations , 2013, Climate Dynamics.

[85]  J. Curry,et al.  Berkeley Earth Temperature Averaging Process , 2013 .

[86]  T. Andrews,et al.  An update on Earth's energy balance in light of the latest global observations , 2012 .

[87]  C. Bitz,et al.  Projected decline in spring snow depth on Arctic sea ice caused by progressively later autumn open ocean freeze‐up this century , 2012 .

[88]  J. Lamarque,et al.  Interactive ozone and methane chemistry in GISS-E2 historical and future climate simulations , 2012 .

[89]  Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM , 2012 .

[90]  Daehyun Kim,et al.  The Tropical Subseasonal Variability Simulated in the NASA GISS General Circulation Model , 2012 .

[91]  Yonghua Chen,et al.  CORRIGENDUM of the MJO Transition from Shallow to Deep Convection in Cloudsat-Calipso Data and GISS GCM Simulations , 2012 .

[92]  Michael J. Prather,et al.  Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry , 2012 .

[93]  P. Adams,et al.  A Fast and Efficient Version of the TwO-Moment Aerosol Sectional (TOMAS) Global Aerosol Microphysics Model , 2012 .

[94]  Mao,et al.  Cloud Simulations in Response to Turbulence Parameterizations in the GISS Model E GCM , 2012 .

[95]  A. Baccini,et al.  Mapping forest canopy height globally with spaceborne lidar , 2011 .

[96]  J. P. Stachnik,et al.  A comparison of the Hadley circulation in modern reanalyses , 2011 .

[97]  B. Cook,et al.  Irrigation induced surface cooling in the context of modern and increased greenhouse gas forcing , 2011 .

[98]  J. Marotzke,et al.  Monitoring the Atlantic meridional overturning circulation , 2011 .

[99]  S. Higgins,et al.  TRY – a global database of plant traits , 2011, Global Change Biology.

[100]  G. Schmidt,et al.  Coupled Aerosol-Chemistry-Climate Twentieth-Century Transient Model Investigation: Trends in Short-Lived Species and Climate Responses , 2011 .

[101]  Duane E. Waliser,et al.  Improving use of satellite data in evaluating climate models , 2011 .

[102]  William E. Johns,et al.  Continuous, Array-Based Estimates of Atlantic Ocean Heat Transport at 26.5°N , 2011 .

[103]  G. Kopp,et al.  A new, lower value of total solar irradiance: Evidence and climate significance , 2011 .

[104]  J. Gregory Long‐term effect of volcanic forcing on ocean heat content , 2010 .

[105]  Michael J. Puma,et al.  Effects of irrigation on global climate during the 20th century , 2010 .

[106]  G. Stenchikov,et al.  Production of lightning NOx and its vertical distribution calculated from three‐dimensional cloud‐scale chemical transport model simulations , 2010 .

[107]  Ø. Skagseth,et al.  Heat in the Barents Sea: transport, storage, and surface fluxes , 2010 .

[108]  David T. Bolvin,et al.  Improving the global precipitation record: GPCP Version 2.1 , 2009 .

[109]  R. Stouffer,et al.  Volcanic signals in oceans , 2009 .

[110]  J. Sprintall,et al.  Direct estimates of the Indonesian Throughflow entering the Indian Ocean: 2004–2006 , 2009 .

[111]  S. Jayne,et al.  The Impact of Abyssal Mixing Parameterizations in an Ocean General Circulation Model , 2009 .

[112]  Robert F. Adler,et al.  A Ten-Year Tropical Rainfall Climatology Based on a Composite of TRMM Products , 2009 .

[113]  K. Trenberth,et al.  Earth's Global Energy Budget , 2009 .

[114]  R. Ruedy,et al.  MATRIX (Multiconfiguration Aerosol TRacker of mIXing state): an aerosol microphysical module for global atmospheric models , 2008 .

[115]  Guosheng Liu,et al.  Deriving snow cloud characteristics from CloudSat observations , 2008 .

[116]  Robert E. Wolfe,et al.  An Algorithm to Produce Temporally and Spatially Continuous MODIS-LAI Time Series , 2008, IEEE Geoscience and Remote Sensing Letters.

[117]  F. Wentz,et al.  How Much More Rain Will Global Warming Bring? , 2007, Science.

[118]  A. Thompson,et al.  Southern Hemisphere Additional Ozonesondes (SHADOZ) 1998–2004 tropical ozone climatology: 3. Instrumentation, station‐to‐station variability, and evaluation with simulated flight profiles , 2007 .

[119]  Y. Hong,et al.  The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales , 2007 .

[120]  D. Streets,et al.  Climate simulations for 1880–2003 with GISS modelE , 2006, physics/0610109.

[121]  Rasmus Fensholt,et al.  MODIS leaf area index products: from validation to algorithm improvement , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[122]  D. Koch,et al.  Constraining the magnitude of the global dust cycle by minimizing the difference between a model and observations , 2006 .

[123]  R. Bleck,et al.  Multi-century simulations with the coupled GISS–HYCOM climate model: control experiments , 2006 .

[124]  V. Canuto,et al.  Present-Day Atmospheric Simulations Using GISS ModelE: Comparison to In Situ, Satellite, and Reanalysis Data , 2006 .

[125]  S. Bauer,et al.  Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model , 2005 .

[126]  J. Hansen,et al.  Earth's Energy Imbalance: Confirmation and Implications , 2005, Science.

[127]  Thomas J. Weingartner,et al.  Monthly temperature, salinity, and transport variability of the Bering Strait through flow , 2005 .

[128]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[129]  D. Hauglustaine,et al.  Global modeling of heterogeneous chemistry on mineral aerosol surfaces: Influence on tropospheric ozone chemistry and comparison to observations , 2004 .

[130]  G. Schmidt,et al.  Ice–ocean boundary conditions for coupled models , 2004 .

[131]  Samee Ullah Khan,et al.  How much more rain? , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[132]  C. Wunsch,et al.  Large-Scale Ocean Heat and Freshwater Transports during the World Ocean Circulation Experiment , 2003 .

[133]  C. Woodcock,et al.  Multiscale analysis and validation of the MODIS LAI product: II. Sampling strategy , 2002 .

[134]  C. Woodcock,et al.  Multiscale analysis and validation of the MODIS LAI product: I. Uncertainty assessment , 2002 .

[135]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[136]  Larry W. Thomason,et al.  Climate forcings in Goddard Institute for Space Studies SI2000 simulations , 2002 .

[137]  D. Martinson,et al.  Sensitivity of sea ice to physical parameterizations in the GISS global climate model , 2001 .

[138]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[139]  J. Curry,et al.  Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations , 2001 .

[140]  Charles J Vörösmarty,et al.  Scaling gridded river networks for macroscale hydrology: Development, analysis, and control of error , 2001 .

[141]  Luca Ridolfi,et al.  Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: III. Vegetation water stress , 2001 .

[142]  Mikio Nakanish,et al.  Improvement Of The Mellor–Yamada Turbulence Closure Model Based On Large-Eddy Simulation Data , 2001 .

[143]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[144]  H. Ichikawa,et al.  Satellite altimeter monitoring the Kuroshio Transport south of Japan , 2001 .

[145]  Frank J. Wentz,et al.  Precise climate monitoring using complementary satellite data sets , 2000, Nature.

[146]  I. Rodríguez‐Iturbe Ecohydrology: A hydrologic perspective of climate‐soil‐vegetation dynamies , 2000 .

[147]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[148]  Jennifer A. Logan,et al.  An analysis of ozonesonde data for the troposphere : recommendations for testing 3-D models and development of a gridded climatology for tropospheric ozone , 1999 .

[149]  William H. Lipscomb,et al.  An energy-conserving thermodynamic model of sea ice , 1999 .

[150]  Mark New,et al.  Surface air temperature and its changes over the past 150 years , 1999 .

[151]  Matthew C. Wheeler,et al.  Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber–Frequency Domain , 1999 .

[152]  Colin Price,et al.  Vertical distributions of lightning NOx for use in regional and global chemical transport models , 1998 .

[153]  Andrew E. Dessler,et al.  A reexamination of the “stratospheric fountain” hypothesis , 1998 .

[154]  Robert E. Dickinson,et al.  Intercomparison of Bulk Aerodynamic Algorithms for the Computation of Sea Surface Fluxes Using TOGA COARE and TAO Data , 1998 .

[155]  Patrick Minnis,et al.  Forcings and chaos in interannual to decadal climate change , 1997 .

[156]  K. Okamoto,et al.  Rain profiling algorithm for the TRMM precipitation radar , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[157]  J. Wallace,et al.  A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production , 1997 .

[158]  I. Watterson,et al.  Non-Dimensional Measures of Climate Model Performance , 1996 .

[159]  David Rind,et al.  A coupled atmosphere‐ocean model for transient climate change studies , 1995 .

[160]  D. Rind,et al.  Use of microwave brightness temperatures with a general circulation model , 1995 .

[161]  D. Rind,et al.  Possible implications of global climate change on global lightning distributions and frequencies , 1994 .

[162]  Albert A. M. Holtslag,et al.  Local Versus Nonlocal Boundary-Layer Diffusion in a Global Climate Model , 1993 .

[163]  Albert A. M. Holtslag,et al.  Eddy Diffusivity and Countergradient Transport in the Convective Atmospheric Boundary Layer , 1991 .

[164]  R. Peterson On the transport of the Antarctic Circumpolar Current through Drake Passage and its relation to wind , 1988 .

[165]  I. Troen,et al.  A simple model of the atmospheric boundary layer; sensitivity to surface evaporation , 1986 .

[166]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[167]  Peter H. Stone,et al.  Efficient Three-Dimensional Global Models for Climate Studies: Models I and II , 1983 .

[168]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .