A Study of the Diffusion Equation with Increase in the Amount of Substance, and its Application to a Biological Problem
暂无分享,去创建一个
For the sake of simplicity we consider the two-dimensional diffusion equation
$$\frac{{\partial v}}{{dt}} = k\left( {\frac{{{{\partial }^{2}}v}}{{\partial {{x}^{2}}}} + \frac{{{{\partial }^{2}}v}}{{\partial {{y}^{2}}}}} \right),k > 0$$
(1)
where r and y are the coordinates of a point in the plane, t is time and v is the density of substance at the point (r, y) at time t. We now assume that diffusion is accompanied by increase in the amount of substance at a rate which depends on the density at the given point and time. We then obtain the equation
$$\frac{{\partial v}}{{\partial t}} = k\left( {\frac{{{{\partial }^{2}}v}}{{\partial {{x}^{2}}}} + \frac{{{{\partial }^{2}}v}}{{\partial {{y}^{2}}}}} \right) + F(v)$$
(2)
[1] R. A. Fisher,et al. The Genetical Theory of Natural Selection , 1931 .
[2] I. Bendixson. Sur les courbes définies par des équations différentielles , 1901 .
[3] Maurice Gevrey,et al. Sur les équations aux dérivées partielles du type parabolique (suite) , 1913 .
[4] Compositio Mathematica,et al. Zur ersten Randwertaufgabe der Wärmeleitungsgleichung , 1935 .