Godunov-type methods for free-surface shallow flows: A review

This review paper concerns the application of numerical methods of the Godunov type to the computation of approximate solutions to free-surface gravity flows modelled under a shallow-water type assumption. In the absence of dissipative processes the resulting governing equations are, with rare exceptions, of hyperbolic type. This mathematical property has, in the main, been responsible for the transfer of the Godunov-type numerical methodology, initially developed for the compressible Euler equations of gas dynamics in the aerospace community, to hydraulics and related areas of application. Godunov methods offer distinctive advantages over other methods. For example, they give correct representation of discontinuous waves (bores); this means the correct propagation speed (the methods are conservative), sharp definition of transitions and absence of unphysical oscillations in the vicinity of the wave. Future trends include (i) the use of these methods to deal with physically more complete models without the shallow water assumption and (ii) implementation of very-high order versions of these methods

[1]  R. Courant,et al.  On the solution of nonlinear hyperbolic differential equations by finite differences , 1952 .

[2]  J. J. Stoker Water Waves: The Mathematical Theory with Applications , 1957 .

[3]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[4]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .

[5]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[6]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme I. The quest of monotonicity , 1973 .

[7]  J. Cunge,et al.  Practical aspects of computational river hydraulics , 1980 .

[8]  Randall J. LeVeque,et al.  Large time step shock-capturing techniques for scalar conservation laws , 1981 .

[9]  Numerical solutions to water waves generated by shallow underwater explosions , 1981 .

[10]  Computational Aspects of the Random Choice Method for Shallow Water Equations , 1981 .

[11]  Phillip Colella,et al.  Glimm's Method for Gas Dynamics , 1982 .

[12]  J. Monaghan Why Particle Methods Work , 1982 .

[13]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[14]  D. Ouazar,et al.  Computational Hydraulics , 1983 .

[15]  S. F. Davis TVD finite difference schemes and artificial viscosity , 1984 .

[16]  James Glimm,et al.  A generalized Riemann problem for quasi-one-dimensional gas flows , 1984 .

[17]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[18]  P. Sweby High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Laws , 1984 .

[19]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[20]  Mutsuto Kawahara,et al.  Finite element method for moving boundary problems in river flow , 1986 .

[21]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[22]  A New Numerical Technique for Quasi-Linear Hyperbolic Systems of Conservation Laws , 1986 .

[23]  S. Osher,et al.  Uniformly high order accuracy essentially non-oscillatory schemes III , 1987 .

[24]  S. Osher,et al.  Uniformly High-Order Accurate Nonoscillatory Schemes. I , 1987 .

[25]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[26]  Paul Glaister,et al.  An approximate linearised Riemann solver for the Euler equations for real gases , 1988 .

[27]  C. Hirsch,et al.  Numerical Computation of Internal and External Flows. By C. HIRSCH. Wiley. Vol. 1, Fundamentals of Numerical Discretization. 1988. 515 pp. £60. Vol. 2, Computational Methods for Inviscid and Viscous Flows. 1990, 691 pp. £65. , 1991, Journal of Fluid Mechanics.

[28]  Abioala A. Akanbi,et al.  Model for Flood Propagation on Initially Dry Land , 1988 .

[29]  Chi-Wang Shu,et al.  TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .

[30]  P. Roe Remote boundary conditions for unsteady multi-dimensional aerodynamic computations , 1989 .

[31]  Eleuterio F. Toro,et al.  A weighted average flux method for hyperbolic conservation laws , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[32]  C. Hirsch Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows , 1990 .

[33]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[34]  Multi-dimensional schemes for scalar advection , 1991 .

[35]  J. V. Soulis,et al.  Computation of two-dimensional dam-break-induced flows , 1991 .

[36]  Pilar García-Navarro,et al.  1‐D Open‐Channel Flow Simulation Using TVD‐McCormack Scheme , 1992 .

[37]  Pilar García-Navarro,et al.  Flux difference splitting for 1D open channel flow equations , 1992 .

[38]  L. C. Wrobel Numerical computation of internal and external flows. Volume 2: Computational methods for inviscid and viscous flows , 1992 .

[39]  Prediction of supercritical flow in open channels , 1992 .

[40]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[41]  Eleuterio F. Toro,et al.  The weighted average flux method applied to the Euler equations , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[42]  Philip L. Roe,et al.  A multidimensional generalization of Roe's flux difference splitter for the euler equations , 1993 .

[43]  Pilar García-Navarro,et al.  A HIGH-RESOLUTION GODUNOV-TYPE SCHEME IN FINITE VOLUMES FOR THE 2D SHALLOW-WATER EQUATIONS , 1993 .

[44]  Alfredo Bermúdez,et al.  Upwind methods for hyperbolic conservation laws with source terms , 1994 .

[45]  D. Zhao,et al.  Finite‐Volume Two‐Dimensional Unsteady‐Flow Model for River Basins , 1994 .

[46]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[47]  E. F. Toro,et al.  The development of a Riemann solver for the steady supersonic Euler equations , 1994, The Aeronautical Journal (1968).

[48]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[49]  Improving the simulation of drying and wetting in a two-dimensional tidal numerical model , 1995 .

[50]  P. García-Navarro,et al.  Accurate flux vector splitting for shocks and shear layers , 1995 .

[51]  Eleuterio F. Toro,et al.  Experimental and numerical assessment of the shallow water model for two-dimensional dam-break type problems , 1995 .

[52]  Pilar García-Navarro,et al.  Genuinely multidimensional upwinding for the 2D shallow water equations , 1995 .

[53]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[54]  Monika Wierse,et al.  A new theoretically motivated higher order upwind scheme on unstructured grids of simplices , 1997, Adv. Comput. Math..

[55]  Eleuterio F. Toro,et al.  AOn WAF-Type Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .

[56]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[57]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[58]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[59]  Matthew Hubbard,et al.  Conservative Multidimensional Upwinding for the Steady Two-Dimensional Shallow Water Equations , 1997 .

[60]  A unified Riemann-probiem-based extension of the Warming–Beam and Lax–Wendroff schemes , 1997 .

[61]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[62]  E. F. Toro,et al.  Primitive, Conservative and Adaptive Schemes for Hyperbolic Conservation Laws , 1998 .

[63]  Randall J. LeVeque,et al.  Balancing Source Terms and Flux Gradients in High-Resolution Godunov Methods , 1998 .

[64]  M. Berzins,et al.  An unstructured finite-volume algorithm for predicting flow in rivers and estuaries , 1998 .

[65]  Jean-Antoine Désidéri,et al.  Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes , 1998 .

[66]  Matthew Hubbard,et al.  Multidimensional Upwinding with Grid Adaptation , 1998 .

[67]  M. Vázquez-Cendón Improved Treatment of Source Terms in Upwind Schemes for the Shallow Water Equations in Channels with Irregular Geometry , 1999 .

[68]  A. A. Khan Modeling flow over an initially dry bed , 2000 .

[69]  P. García-Navarro,et al.  On numerical treatment of the source terms in the shallow water equations , 2000 .

[70]  B. Ben Moussa,et al.  Convergence of SPH Method for Scalar Nonlinear Conservation Laws , 2000, SIAM J. Numer. Anal..

[71]  Pilar García-Navarro,et al.  Flux difference splitting and the balancing of source terms and flux gradients , 2000 .

[72]  Eleuterio F. Toro,et al.  Centred TVD schemes for hyperbolic conservation laws , 2000 .

[73]  Mourad Heniche,et al.  A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries , 2000 .

[74]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[75]  Pilar García-Navarro,et al.  Efficient construction of high‐resolution TVD conservative schemes for equations with source terms: application to shallow water flows , 2001 .

[76]  B. Moussa Meshless Particle Methods: Recent Developments for Nonlinear Conservation Laws in Bounded Domain , 2001 .

[77]  E. Toro Godunov Methods: Theory and Applications , 2001 .

[78]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[79]  Pilar García-Navarro,et al.  Balancing Source Terms and Flux Gradients in Finite Volume Schemes , 2001 .

[80]  Robert J. Connell,et al.  Two-Dimensional Flood Plain Flow. I: Model Description , 2001 .

[81]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[82]  Pilar García-Navarro,et al.  Numerical Modeling of Basin Irrigation with an Upwind Scheme , 2002 .

[83]  Claus-Dieter Munz,et al.  ADER: A High-Order Approach for Linear Hyperbolic Systems in 2D , 2002, J. Sci. Comput..

[84]  Eleuterio F. Toro,et al.  ARBITRARILY ACCURATE NON-OSCILLATORY SCHEMES FOR A NONLINEAR CONSERVATION LAW , 2002 .

[85]  Scott F. Bradford,et al.  Finite-Volume Model for Shallow-Water Flooding of Arbitrary Topography , 2002 .

[86]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[87]  Eleuterio F. Toro,et al.  PRICE: primitive centred schemes for hyperbolic systems , 2003 .

[88]  Pilar García-Navarro,et al.  Unsteady free surface flow simulation over complex topography with a multidimensional upwind technique , 2003 .

[89]  Stephen Roberts,et al.  Explicit schemes for dam-break simulations , 2003 .

[90]  A. Colagrossi,et al.  Numerical simulation of interfacial flows by smoothed particle hydrodynamics , 2003 .

[91]  Martin Käser,et al.  Adaptive Methods for the Numerical Simulation of Transport Processes , 2003 .

[92]  Michael Dumbser,et al.  Fast high order ADER schemes for linear hyperbolic equations , 2004 .

[93]  Luka Sopta,et al.  Balanced finite volume WENO and central WENO schemes for the shallow water and the open-channel flow equations , 2004 .

[94]  Eleuterio F. Toro,et al.  CENTERED DIFFERENCE SCHEMES FOR NONLINEAR HYPERBOLIC EQUATIONS , 2004 .

[95]  Pilar García-Navarro,et al.  Zero mass error using unsteady wetting–drying conditions in shallow flows over dry irregular topography , 2004 .

[96]  Pilar García-Navarro,et al.  Implicit schemes with large time step for non‐linear equations: application to river flow hydraulics , 2004 .

[97]  Javier Murillo,et al.  Coupling between shallow water and solute flow equations: analysis and management of source terms in 2D , 2005 .

[98]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[99]  Eleuterio F. Toro,et al.  ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions , 2005 .

[100]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for aeroacoustics , 2005 .

[101]  Yulong Xing,et al.  High order finite difference WENO schemes with the exact conservation property for the shallow water equations , 2005 .

[102]  Armin Iske,et al.  ADER schemes on adaptive triangular meshes for scalar conservation laws , 2005 .

[103]  Javier Murillo,et al.  Numerical boundary conditions for globally mass conservative methods to solve the shallow‐water equations and applied to river flow , 2006 .

[104]  Manuel Jesús Castro Díaz,et al.  High order finite volume schemes based on reconstruction of states for solving hyperbolic systems with nonconservative products. Applications to shallow-water systems , 2006, Math. Comput..

[105]  Javier Murillo,et al.  Extension of an explicit finite volume method to large time steps (CFL>1): application to shallow water flows , 2006 .

[106]  Jostein R. Natvig,et al.  Well-balanced finite volume schemes of arbitrary order of accuracy for shallow water flows , 2006, J. Comput. Phys..

[107]  Carlos Parés Madroñal,et al.  Numerical methods for nonconservative hyperbolic systems: a theoretical framework , 2006, SIAM J. Numer. Anal..

[108]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[109]  M. J. Castro,et al.  A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products: Application to shallow flows , 2006 .

[110]  With Invariant Submanifolds,et al.  Systems of Conservation Laws , 2009 .