Estimation of uncertainty and variability in bacterial growth using Bayesian inference. Application to Listeria monocytogenes.

The usefulness of risk assessment is limited by its ability or inability to model and evaluate risk uncertainty and variability separately. A key factor of variability and uncertainty in microbial risk assessment could be growth variability between strains and growth model parameter uncertainty. In this paper, we propose a Bayesian procedure for growth parameter estimation which makes it possible to separate these two components by means of hyperparameters. This model incorporates in a single step the logistic equation with delay as a primary growth model and the cardinal temperature equation as a secondary growth model. The estimation of Listeria monocytogenes growth parameters in milk using literature data is proposed as a detailed application. While this model should be applied on genuine data, it is highlighted that the proposed approach may be convenient for estimating the variability and uncertainty of growth parameters separately, using a complete predictive microbiology model.

[1]  M H Zwietering,et al.  Modelling bacterial growth of Listeria monocytogenes as a function of water activity, pH and temperature. , 1993, International journal of food microbiology.

[2]  T. W. Anderson,et al.  Asymptotic Theory of Certain "Goodness of Fit" Criteria Based on Stochastic Processes , 1952 .

[3]  S. E. Hills,et al.  Illustration of Bayesian Inference in Normal Data Models Using Gibbs Sampling , 1990 .

[4]  K van't Riet,et al.  Modeling of bacterial growth as a function of temperature , 1991, Applied and environmental microbiology.

[5]  J Olley,et al.  Relationship between temperature and growth rate of bacterial cultures , 1982, Journal of bacteriology.

[6]  A. Hightower,et al.  Epidemic listeriosis--evidence for transmission by food. , 1983, The New England journal of medicine.

[7]  J. G. Banks,et al.  Growth of Listeria monocytogenes at refrigeration temperatures. , 1990, The Journal of applied bacteriology.

[8]  Suzanne J.C. van Gerwen,et al.  Growth and inactivation models to be used in quantitative risk assessments. , 1998, Journal of food protection.

[9]  J. Augustin,et al.  Mathematical modelling of the growth rate and lag time for Listeria monocytogenes. , 2000, International journal of food microbiology.

[10]  D W Schaffner,et al.  Application of a statistical bootstrapping technique to calculate growth rate variance for modelling psychrotrophic pathogen growth. , 1994, International journal of food microbiology.

[11]  R L Buchanan,et al.  Effect of temperature history on the growth of Listeria monocytogenes Scott A at refrigeration temperatures. , 1991, International journal of food microbiology.

[12]  J. Farber,et al.  Health risk assessment of Listeria monocytogenes in Canada. , 1996, International journal of food microbiology.

[13]  J P Flandrois,et al.  A model describing the relationship between regrowth lag time and mild temperature increase for Listeria monocytogenes. , 1999, International journal of food microbiology.

[14]  Anna M. Lammerding,et al.  An Overview of Microbial Food Safety Risk Assessment †. , 1997, Journal of food protection.

[15]  József Baranyi,et al.  A non-autonomous differential equation to model bacterial growth. , 1993 .

[16]  M. H. Zwietering,et al.  Evaluation of Data Transformations and Validation of a Model for the Effect of Temperature on Bacterial Growth , 1994, Applied and environmental microbiology.

[17]  T. Ross,et al.  Behaviour of Listeria monocytogenes under combined chilling processes , 1999, Letters in Applied Microbiology.

[18]  M. Nauta,et al.  Variability in Growth Characteristics of Different E. coli O157:H7 Isolates, and its Implications for Predictive Microbiology , 1999 .

[19]  E. H. Marth,et al.  Behavior of Listeria monocytogenes in Skim Milk during Fermentation with Mesophilic Lactic Starter Cultures. , 1988, Journal of food protection.

[20]  C Collette,et al.  Predictive microbiology of dairy products: influence of biological factors affecting growth of Listeria monocytogenes. , 1997, Journal of AOAC International.

[21]  E. H. Marth,et al.  Behavior of Listeria monocytogenes in Skim Milk and in Yogurt Mix during Fermentation by Thermophilic Lactic Acid Bacteria. , 1988, Journal of food protection.

[22]  D. Vose Risk Analysis: A Quantitative Guide , 2000 .

[23]  M. Peck,et al.  Predictive models of the effect of temperature, pH and acetic and lactic acids on the growth of Listeria monocytogenes. , 1996, International journal of food microbiology.

[24]  K. Stanich,et al.  Modelling the influence of temperature on the recovery ofListeria monocytogenesfrom heat injury , 1997 .

[25]  A. Lebert,et al.  Variability of the response of 66Listeria monocytogenesandListeria innocuastrains to different growth conditions , 1997 .

[26]  S. J. Press Multivariate Analysis, Bayesian , 2005 .

[27]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[28]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[29]  J. Augustin,et al.  A model describing the effect of temperature history on lag time for Listeria monocytogenes. , 2000, International journal of food microbiology.

[30]  E. H. Marth,et al.  Inhibition of Listeria monocytogenes by Cocoa in a Broth Medium and Neutralization of this Effect by Casein. , 1990, Journal of food protection.

[31]  K J Versyck,et al.  On the design of optimal dynamic experiments for parameter estimation of a Ratkowsky-type growth kinetics at suboptimal temperatures. , 2000, International journal of food microbiology.

[32]  J P Flandrois,et al.  Convenient Model To Describe the Combined Effects of Temperature and pH on Microbial Growth , 1995, Applied and environmental microbiology.

[33]  E. H. Marth,et al.  Growth of Listeria monocytogenes in Skim, Whole and Chocolate Milk, and in Whipping Cream during Incubation at 4, 8, 13, 21 and 35°C. , 1987, Journal of food protection.

[34]  L. Rosso,et al.  Modélisation et microbiologie prévisionnelle : élaboration d'un nouvel outil pour l'agro-alimentaire , 1995 .

[35]  J P Flandrois,et al.  An unexpected correlation between cardinal temperatures of microbial growth highlighted by a new model. , 1993, Journal of theoretical biology.

[36]  Takehiko Kono,et al.  Kinetics of microbial cell growth , 1968 .

[37]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[38]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[39]  E. H. Marth,et al.  Behavior of Listeria monocytogenes at 4 and 22°C in Whey and Skim Milk Containing 6 or 12% Sodium Chloride. , 1989, Journal of food protection.

[40]  Régis Pouillot,et al.  Caractérisation quantitative de la variabilité de l'écologie de[i] Listeria monocytogenes[/i] par méta-analyse statistique, en vue de l'analyse du risque de listériose lié à la consommation de lait cru , 2000 .

[41]  R. Schmidt,et al.  Growth of Listeria monocytogenes at 10°C in Milk Preincubated with Selected Pseudomonads 1. , 1988, Journal of food protection.

[42]  N Bemrah,et al.  Quantitative risk assessment of human listeriosis from consumption of soft cheese made from raw milk. , 1998, Preventive veterinary medicine.

[43]  E. H. Marth,et al.  Growth of Listeria monocytogenes at 4, 32, and 40°C in Skim Milk and in Retentate and Permeate from Ultrafiltered Skim Milk. , 1991, Journal of food protection.

[44]  M. Delignette-Muller,et al.  Relation between the generation time and the lag time of bacterial growth kinetics. , 1998, International journal of food microbiology.

[45]  M. Delignette-Muller,et al.  Biological variability and exposure assessment. , 2000, International journal of food microbiology.

[46]  James H. Lambert,et al.  When and How Can You Specify a Probability Distribution When You Don't Know Much? II , 1999 .

[47]  C. Donnelly,et al.  Psychrotrophic Growth and Thermal Inactivation of Listeria monocytogenes as a Function of Milk Composition. , 1986, Journal of food protection.

[48]  H M Marks,et al.  Topics in Microbial Risk Assessment: Dynamic Flow Tree Process , 1998, Risk analysis : an official publication of the Society for Risk Analysis.

[49]  Dale Hattis,et al.  A. Uncertainty and Variability , 1999 .

[50]  T. Louis,et al.  Bayes and Empirical Bayes Methods for Data Analysis. , 1997 .

[51]  D J Spiegelhalter,et al.  Bayesian approaches to random-effects meta-analysis: a comparative study. , 1995, Statistics in medicine.

[52]  E. H. Marth,et al.  Addition of Cocoa Powder, Cane Sugar, and Carrageenan to Milk Enhances Growth of Listeria monocytogenes. , 1987, Journal of Food Protection.

[53]  F. Rombouts,et al.  Modeling of the Bacterial Growth Curve , 1990, Applied and environmental microbiology.

[54]  James T. Peeler,et al.  Hazard Assessment of Listeria monocytogenes in the Processing of Bovine Milk. , 1994, Journal of food protection.

[55]  Maarten Nauta,et al.  Separation of uncertainty and variability in quantitative microbial risk assessment models. , 2000 .