A nodal spline interpolant for the Gregory rule of even order
暂无分享,去创建一个
[1] Erich Martensen. Darstellung und Entwicklung des Restgliedes der Gregoryschen Quadraturformel mit Hilfe von Spline-Funktionen , 1973 .
[2] I. J. Schoenberg,et al. The interpolatory background of the Euler-MacLaurin quadrature formula , 1971 .
[3] A. Stroud. Estimating Quadrature Errors for Functions with Low Continuity , 1966 .
[4] C. Micchelli,et al. Compactly supported fundamental functions for spline interpolation , 1988 .
[5] A. Ralston. A first course in numerical analysis , 1965 .
[6] E. Martensen,et al. Optimale Fehlerschranken für die Quadraturformel von Gregory , 1964 .
[7] A. H. Stroud,et al. Numerical Quadrature and Solution of Ordinary Differential Equations: A Textbook for a Beginning Course in Numerical Analysis , 1974 .
[8] Optimal local spline interpolants , 1987 .
[9] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[10] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[11] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[12] K.-J. Fuml,et al. Über Monotonie und Fehlerkontrolle bei den Gregoryschen Quadraturverfahren , 1987 .
[13] J. M. De Villiers. A convergence result in nodal spline interpolation , 1993 .
[14] Kendall E. Atkinson. An introduction to numerical analysis , 1978 .