Cramér-Rao Bound Under Norm Constraint

The constrained Cramér-Rao bound (CCRB) is a benchmark for constrained parameter estimation. However, the CCRB unbiasedness conditions are too strict and thus, the CCRB may not be a lower bound for estimators under constraints. The recently developed Lehmann-unbiased-CCRB (LU-CCRB) was shown to be a lower bound for the commonly used constrained maximum likelihood (CML) estimator performance in cases where the CCRB is not. In constrained parameter estimation, the estimator is usually required to satisfy the constraints. However, the LU-CCRB is a lower bound for Lehmann-unbiased estimators that do not necessarily satisfy the constraints. In this letter, we consider the norm constraint and derive a novel bound, called norm-constrained CCRB (NC-CCRB), which is a lower bound on the mean-squared-error matrix trace of Lehmann-unbiased estimators that satisfy the norm constraint. The NC-CCRB is shown to be tighter than the LU-CCRB. In the simulations, we consider a linear estimation problem under norm constraint in which the proposed NC-CCRB better predicts the performance of the CML estimator than the CCRB trace and the LU-CCRB.

[1]  Michael R. Osborne,et al.  Scoring with constraints , 2000, The ANZIAM Journal.

[2]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[3]  Joseph Tabrikian,et al.  A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation , 2016, IEEE Transactions on Signal Processing.

[4]  Lang Tong,et al.  Estimation After Parameter Selection: Performance Analysis and Estimation Methods , 2015, IEEE Transactions on Signal Processing.

[5]  Joseph Tabrikian,et al.  Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.

[6]  Venkatesh Saligrama,et al.  On the Non-Existence of Unbiased Estimators in Constrained Estimation Problems , 2018, IEEE Transactions on Information Theory.

[7]  Brian M. Sadler,et al.  Maximum-Likelihood Estimation, the CramÉr–Rao Bound, and the Method of Scoring With Parameter Constraints , 2008, IEEE Transactions on Signal Processing.

[8]  S.T. Smith,et al.  Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.

[9]  Yonina C. Eldar,et al.  The Cramér-Rao Bound for Estimating a Sparse Parameter Vector , 2010, IEEE Transactions on Signal Processing.

[10]  Joseph Tabrikian,et al.  On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..

[11]  Joseph Tabrikian,et al.  Limitations of Constrained CRB and an Alternative Bound , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).

[12]  Thomas L. Marzetta,et al.  A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..

[13]  Joseph Tabrikian,et al.  The Risk-Unbiased Cramér–Rao Bound for Non-Bayesian Multivariate Parameter Estimation , 2018, IEEE Transactions on Signal Processing.

[14]  Steven Kay,et al.  Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[15]  Joseph Tabrikian,et al.  Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.

[16]  Alfred O. Hero,et al.  Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.

[17]  Bhaskar D. Rao,et al.  Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.

[18]  Joseph Tabrikian,et al.  Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.

[19]  Yonina C. Eldar,et al.  On the Constrained CramÉr–Rao Bound With a Singular Fisher Information Matrix , 2009, IEEE Signal Processing Letters.

[20]  B. C. Ng,et al.  On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.

[21]  Lei Hu,et al.  A New Derivation of Constrained Cramér-Rao Bound Via Norm Minimization , 2011, IEEE Trans. Signal Process..

[22]  H. Hendriks A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .

[23]  Sheng Chen,et al.  Regularized orthogonal least squares algorithm for constructing radial basis function networks , 1996 .

[24]  T. Moore A Theory of Cramer-Rao Bounds for Constrained Parametric Models , 2010 .

[25]  Joseph Tabrikian,et al.  Cram$\acute{\text{e}}$r–Rao Bound for Constrained Parameter Estimation Using Lehmann-Unbiasedness , 2018, IEEE Transactions on Signal Processing.

[26]  G. Golub,et al.  Quadratically constrained least squares and quadratic problems , 1991 .

[27]  Nicolas Boumal,et al.  On Intrinsic Cramér-Rao Bounds for Riemannian Submanifolds and Quotient Manifolds , 2013, IEEE Transactions on Signal Processing.

[28]  Brian M. Sadler,et al.  The Constrained CramÉr–Rao Bound From the Perspective of Fitting a Model , 2007, IEEE Signal Processing Letters.

[29]  T. Moon,et al.  Mathematical Methods and Algorithms for Signal Processing , 1999 .

[30]  Bin Yang,et al.  MMSE estimation in a linear signal model with ellipsoidal constraints , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[31]  João M. F. Xavier,et al.  Intrinsic variance lower bound (IVLB): an extension of the Cramer-Rao bound to Riemannian manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..