Cramér-Rao Bound Under Norm Constraint
暂无分享,去创建一个
[1] Michael R. Osborne,et al. Scoring with constraints , 2000, The ANZIAM Journal.
[2] Alan S. Willsky,et al. Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.
[3] Joseph Tabrikian,et al. A New Class of Bayesian Cyclic Bounds for Periodic Parameter Estimation , 2016, IEEE Transactions on Signal Processing.
[4] Lang Tong,et al. Estimation After Parameter Selection: Performance Analysis and Estimation Methods , 2015, IEEE Transactions on Signal Processing.
[5] Joseph Tabrikian,et al. Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.
[6] Venkatesh Saligrama,et al. On the Non-Existence of Unbiased Estimators in Constrained Estimation Problems , 2018, IEEE Transactions on Information Theory.
[7] Brian M. Sadler,et al. Maximum-Likelihood Estimation, the CramÉr–Rao Bound, and the Method of Scoring With Parameter Constraints , 2008, IEEE Transactions on Signal Processing.
[8] S.T. Smith,et al. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.
[9] Yonina C. Eldar,et al. The Cramér-Rao Bound for Estimating a Sparse Parameter Vector , 2010, IEEE Transactions on Signal Processing.
[10] Joseph Tabrikian,et al. On the limitations of Barankin type bounds for MLE threshold prediction , 2015, Signal Process..
[11] Joseph Tabrikian,et al. Limitations of Constrained CRB and an Alternative Bound , 2018, 2018 IEEE Statistical Signal Processing Workshop (SSP).
[12] Thomas L. Marzetta,et al. A simple derivation of the constrained multiple parameter Cramer-Rao bound , 1993, IEEE Trans. Signal Process..
[13] Joseph Tabrikian,et al. The Risk-Unbiased Cramér–Rao Bound for Non-Bayesian Multivariate Parameter Estimation , 2018, IEEE Transactions on Signal Processing.
[14] Steven Kay,et al. Unbiased estimation of the phase of a sinusoid , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.
[15] Joseph Tabrikian,et al. Non-Bayesian Periodic Cramér-Rao Bound , 2013, IEEE Transactions on Signal Processing.
[16] Alfred O. Hero,et al. Lower bounds for parametric estimation with constraints , 1990, IEEE Trans. Inf. Theory.
[17] Bhaskar D. Rao,et al. Cramer-Rao lower bound for constrained complex parameters , 2004, IEEE Signal Processing Letters.
[18] Joseph Tabrikian,et al. Cyclic Barankin-Type Bounds for Non-Bayesian Periodic Parameter Estimation , 2014, IEEE Transactions on Signal Processing.
[19] Yonina C. Eldar,et al. On the Constrained CramÉr–Rao Bound With a Singular Fisher Information Matrix , 2009, IEEE Signal Processing Letters.
[20] B. C. Ng,et al. On the Cramer-Rao bound under parametric constraints , 1998, IEEE Signal Processing Letters.
[21] Lei Hu,et al. A New Derivation of Constrained Cramér-Rao Bound Via Norm Minimization , 2011, IEEE Trans. Signal Process..
[22] H. Hendriks. A Crame´r-Rao–type lower bound for estimators with values in a manifold , 1991 .
[23] Sheng Chen,et al. Regularized orthogonal least squares algorithm for constructing radial basis function networks , 1996 .
[24] T. Moore. A Theory of Cramer-Rao Bounds for Constrained Parametric Models , 2010 .
[25] Joseph Tabrikian,et al. Cram$\acute{\text{e}}$r–Rao Bound for Constrained Parameter Estimation Using Lehmann-Unbiasedness , 2018, IEEE Transactions on Signal Processing.
[26] G. Golub,et al. Quadratically constrained least squares and quadratic problems , 1991 .
[27] Nicolas Boumal,et al. On Intrinsic Cramér-Rao Bounds for Riemannian Submanifolds and Quotient Manifolds , 2013, IEEE Transactions on Signal Processing.
[28] Brian M. Sadler,et al. The Constrained CramÉr–Rao Bound From the Perspective of Fitting a Model , 2007, IEEE Signal Processing Letters.
[29] T. Moon,et al. Mathematical Methods and Algorithms for Signal Processing , 1999 .
[30] Bin Yang,et al. MMSE estimation in a linear signal model with ellipsoidal constraints , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.
[31] João M. F. Xavier,et al. Intrinsic variance lower bound (IVLB): an extension of the Cramer-Rao bound to Riemannian manifolds , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..