Polyurethane aerogels synthesis for thermal insulation – textural, thermal and mechanical properties

Polyurethane aerogels were prepared via sol-gel synthesis and dried with supercritical carbon dioxide (CO2) according to catalyst concentration. The influence of this parameter was investigated, first in order to modify the reaction kinetics, then to study its impact on several characteristics. It was observed that this parameter influences the global shrinkage and the bulk density of the resulting materials. The effect of catalyst concentration on the dry samples was then studied in terms of textural, thermal and mechanical properties, thanks to scanning electron microscopy (SEM), nitrogen (N2) adsorption, non-intrusive mercury (Hg) porosimetry, thermal conductivity measurements and uniaxial compression tests. Results allowed us to identify correlations between these characteristics and to determine an optimal density range for thermal and mechanical compromise associated with a fine internal mesoporous texture.

[1]  Pascal Henry Biwole,et al.  A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating , 2014 .

[2]  Arild Gustavsen,et al.  Vacuum insulation panels for building applications: A review and beyond , 2010 .

[3]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[4]  R. Pekala,et al.  Organic aerogels from the polycondensation of resorcinol with formaldehyde , 1989 .

[5]  Hongbing Lu,et al.  Fractal Multiscale Nanoporous Polyurethanes: Flexible to Extremely Rigid Aerogels from Multifunctional Small Molecules , 2013 .

[6]  S. Blacher,et al.  Interpretation of mercury porosimetry applied to aerogels , 1995 .

[7]  Hongbing Lu,et al.  Monolithic hierarchical fractal assemblies of silica nanoparticles cross-linked with polynorbornene via ROMP: A structure-property correlation from molecular to bulk through nano , 2012 .

[8]  C. Sotiriou-Leventis,et al.  Cocoon-in-web-like superhydrophobic aerogels from hydrophilic polyurea and use in environmental remediation. , 2014, ACS applied materials & interfaces.

[9]  N. Leventis,et al.  Flexible Aerogels From Hyperbranched Polyurethanes: Probing the Role of Molecular Rigidity with Poly(Urethane Acrylates) vs. Poly(Urethane Norbornenes) , 2014 .

[10]  Allan F. M. Barton,et al.  CRC Handbook of solubility parameters and other cohesion parameters , 1983 .

[11]  H. Kulak,et al.  Dimethyl sulfoxide as a solvent in the Williamson ether synthesis , 1969 .

[12]  R. Pekala,et al.  Organic aerogels: microstructural dependence of mechanical properties in compression , 1990 .

[13]  P. Achard,et al.  Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation , 2004 .

[14]  Samuel Brunner,et al.  Thermo-hygric properties of a newly developed aerogel based insulation rendering for both exterior and interior applications , 2012 .

[15]  Erik Bardy,et al.  Thermal Conductivity and Compressive Strain of Aerogel Insulation Blankets Under Applied Hydrostatic Pressure , 2007 .

[16]  D. Lecomte,et al.  Effective thermal conductivity of divided silica xerogel beds , 2004 .

[17]  N. Leventis Three-dimensional core-shell superstructures: mechanically strong aerogels. , 2007, Accounts of chemical research.

[18]  L. Ratke,et al.  Flexibilisation of resorcinol–formaldehyde aerogels , 2013 .

[19]  Fu-chi Wang,et al.  Compressive behaviors and morphological changes of resorcinol–formaldehyde aerogel at high strain rates , 2010 .

[20]  Reinhold W. Lang,et al.  Uniaxial compression testing of polymeric materials , 2010 .

[21]  N. Leventis,et al.  Correlation of microstructure and thermal conductivity in nanoporous solids: The case of polyurea aerogels synthesized from an aliphatic tri-isocyanate and water , 2013 .

[22]  G. Scherer,et al.  Deformation of aerogels during characterization , 1995 .

[23]  D. Randall,et al.  Polyurethane-based organic aerogels' thermal performance , 1998 .

[24]  Patrick Achard,et al.  Aerogel-based thermal superinsulation: an overview , 2012, Journal of Sol-Gel Science and Technology.

[25]  J. Rouzaud,et al.  Carbon aerogels, cryogels and xerogels: Influence of the drying method on the textural properties of porous carbon materials , 2005 .

[26]  G. Scherer,et al.  Nitrogen sorption in aerogels , 2001 .

[27]  J. Rouquerol,et al.  Texture des matériaux pulvérulents ou poreux , 2003, Techniques d'analyse.

[28]  Jiao Guo,et al.  Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. , 2012, ACS applied materials & interfaces.

[29]  Samuel Brunner,et al.  Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes , 2014 .

[30]  R. Caps,et al.  Correlation between structure and thermal conductivity of organic aerogels , 1995 .

[31]  Lynn A. Capadona,et al.  Structure−Property Relationships in Porous 3D Nanostructures as a Function of Preparation Conditions: Isocyanate Cross-Linked Silica Aerogels , 2007 .

[32]  A. B. Haan,et al.  Drying of silica aerogel with supercritical carbon dioxide , 1995 .

[33]  R. Noack,et al.  Kinetics and catalysis of consecutive isocyanate reactions. Formation of carbamates, allophanates and isocyanurates , 1995 .

[34]  P. Achard,et al.  Characterization of hyperporous polyurethane-based gels by non-intrusive mercury porosimetry , 2003 .