An algorithmic framework for segmenting trajectories based on spatio-temporal criteria

In this paper we address the problem of segmenting a trajectory such that each segment is in some sense homogeneous. We formally define different spatio-temporal criteria under which a trajectory can be homogeneous, including location, heading, speed, velocity, curvature, sinuosity, and curviness. We present a framework that allows us to segment any trajectory into a minimum number of segments under any of these criteria, or any combination of these criteria. In this framework, the segmentation problem can generally be solved in O(n log n) time, where n is the number of edges of the trajectory to be segmented.

[1]  Reinhard Klette,et al.  A Comparative Study on 2D Curvature Estimators , 2007, 2007 International Conference on Computing: Theory and Applications (ICCTA'07).

[2]  Simon Benhamou,et al.  Optimal sinuosity in central place foraging movements , 1991, Animal Behaviour.

[3]  Jerry E. Mueller AN INTRODUCTION TO THE HYDRAULIC AND TOPOGRAPHIC SINUOSITY INDEXES1 , 1968 .

[4]  Cyrus Shahabi,et al.  Robust Time-Referenced Segmentation of Moving Object Trajectories , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[5]  Micha Sharir,et al.  A subexponential bound for linear programming , 1992, SCG '92.

[6]  Thomas Lewiner,et al.  Curvature and torsion estimators based on parametric curve fitting , 2005, Comput. Graph..

[7]  Subhash Suri,et al.  Offline maintenance of planar configurations , 1991, SODA '91.

[8]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[9]  Jörg Sander,et al.  A Trajectory Splitting Model for Efficient Spatio-Temporal Indexing , 2005, VLDB.

[10]  Leonidas J. Guibas,et al.  Randomized incremental construction of Delaunay and Voronoi diagrams , 1990, Algorithmica.

[11]  Philip S. Yu,et al.  Global distance-based segmentation of trajectories , 2006, KDD '06.

[12]  Dimitrios Gunopulos,et al.  Efficient Indexing of Spatiotemporal Objects , 2002, EDBT.

[13]  Emo Welzl,et al.  Smallest enclosing disks (balls and ellipsoids) , 1991, New Results and New Trends in Computer Science.

[14]  Allan D. Jepson,et al.  Trajectory segmentation using dynamic programming , 2002, Object recognition supported by user interaction for service robots.

[15]  Corinne Plazanet Measurement , Characterization and Classification for Automated Line Feature Generalization , 1995 .

[16]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..