Suppression of phagocytic cells in retinal disorders using amphiphilic poly(γ-glutamic acid) nanoparticles containing dexamethasone.

[1]  J. H. Kim,et al.  Intravenously administered gold nanoparticles pass through the blood–retinal barrier depending on the particle size, and induce no retinal toxicity , 2009, Nanotechnology.

[2]  T. Nakazawa,et al.  Drug reflux during posterior subtenon infusion of triamcinolone acetonide in diffuse diabetic macular edema not only brings insufficient reduction but also causes elevation of intraocular pressure , 2009, Graefe's Archive for Clinical and Experimental Ophthalmology.

[3]  Shih-Jen Chen,et al.  Intraocular pressure elevation after intravitreal triamcinolone acetonide injection in a Chinese population. , 2008, American journal of ophthalmology.

[4]  T. Nakazawa,et al.  Comparative therapy evaluation of intravitreal bevacizumab and triamcinolone acetonide on persistent diffuse diabetic macular edema. , 2008, American journal of ophthalmology.

[5]  Joan W. Miller,et al.  Inhibition of vascular adhesion protein‐1 suppresses endotoxin‐induced uveitis , 2008, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[6]  M. Akashi,et al.  Nanoparticles built by self-assembly of amphiphilic gamma-PGA can deliver antigens to antigen-presenting cells with high efficiency: a new tumor-vaccine carrier for eliciting effector T cells. , 2008, Vaccine.

[7]  M. Akashi,et al.  Development of amphiphilic gamma-PGA-nanoparticle based tumor vaccine: potential of the nanoparticulate cytosolic protein delivery carrier. , 2008, Biochemical and biophysical research communications.

[8]  M. Akashi,et al.  Single dose of inactivated Japanese encephalitis vaccine with poly(gamma-glutamic acid) nanoparticles provides effective protection from Japanese encephalitis virus. , 2008, Vaccine.

[9]  M. Akashi,et al.  Poly(γ‐glutamic acid) nanoparticles as an efficient antigen delivery and adjuvant system: Potential for an AIDS vaccine , 2008, Journal of medical virology.

[10]  J. Hwang,et al.  Triamcinolone acetonide-mediated oxidative injury in retinal cell culture: comparison with dexamethasone. , 2007, Investigative ophthalmology & visual science.

[11]  T. Olsen,et al.  Intraocular nanoparticle drug delivery: a pilot study using an aerosol during pars plana vitrectomy. , 2007, Investigative ophthalmology & visual science.

[12]  P. Kaiser,et al.  Adverse events after intravitreal triamcinolone in patients with and without uveitis. , 2007, Ophthalmology.

[13]  Samir Mitragotri,et al.  Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[14]  M. Akashi,et al.  Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly(amino acid) derivatives. , 2007, Biomaterials.

[15]  M. Akashi,et al.  Induction of Potent CD8+ T-Cell Responses by Novel Biodegradable Nanoparticles Carrying Human Immunodeficiency Virus Type 1 gp120 , 2007, Journal of Virology.

[16]  Anna L. Ells,et al.  Safety profile of intravitreal triamcinolone acetonide. , 2007, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[17]  Joan W. Miller,et al.  Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis , 2007, Proceedings of the National Academy of Sciences.

[18]  T. Nakazawa,et al.  Pitavastatin prevents NMDA‐induced retinal ganglion cell death by suppressing leukocyte recruitment , 2007, Journal of neurochemistry.

[19]  Joan W. Miller,et al.  Tumor Necrosis Factor-α Mediates Oligodendrocyte Death and Delayed Retinal Ganglion Cell Loss in a Mouse Model of Glaucoma , 2006, The Journal of Neuroscience.

[20]  T. Nakazawa,et al.  Pretreatment of posterior subtenon injection of triamcinolone acetonide has beneficial effects for grid pattern photocoagulation against diffuse diabetic macular oedema , 2006, British Journal of Ophthalmology.

[21]  H. Edelhauser,et al.  Ocular drug delivery , 2006, Expert opinion on drug delivery.

[22]  Esther Eljarrat-Binstock,et al.  Iontophoresis: a non-invasive ocular drug delivery. , 2006, Journal of controlled release : official journal of the Controlled Release Society.

[23]  M. Akashi,et al.  Multifunctional conjugation of proteins on/into bio-nanoparticles prepared by amphiphilic poly(γ-glutamic acid) , 2006, Journal of biomaterials science. Polymer edition.

[24]  Joan W. Miller,et al.  Characterization of cytokine responses to retinal detachment in rats. , 2005, Molecular vision.

[25]  M. Akashi,et al.  Hydrolytic and enzymatic degradation of nanoparticles based on amphiphilic poly(gamma-glutamic acid)-graft-L-phenylalanine copolymers. , 2006, Biomacromolecules.

[26]  M. Akashi,et al.  Preparation and characterization of biodegradable nanoparticles based on poly(gamma-glutamic acid) with l-phenylalanine as a protein carrier. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[27]  A. Domb,et al.  Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. , 2005, Journal of controlled release : official journal of the Controlled Release Society.

[28]  G. Kroemer,et al.  Clearance of apoptotic photoreceptors: elimination of apoptotic debris into the subretinal space and macrophage-mediated phagocytosis via phosphatidylserine receptor and integrin alphavbeta3. , 2003, The American journal of pathology.

[29]  Y. Ogura,et al.  Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device. , 2003, Investigative ophthalmology & visual science.

[30]  Uday B Kompella,et al.  Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. , 2003, Investigative ophthalmology & visual science.

[31]  N. Serizawa,et al.  Three T‐cell determinants of Cry j 1 and Cry j 2, the major Japanese cedar pollen antigens, retain their immunogenicity and tolerogenicity in a linked peptide , 2002, Immunology.

[32]  I. Shih,et al.  The production of poly-(γ-glutamic acid) from microorganisms and its various applications , 2001 .

[33]  S. Davis,et al.  Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[34]  R. Bodmeier,et al.  Physicomechanical properties of biodegradable poly(D,L-lactide) and poly(D,L-lactide-co-glycolide) films in the dry and wet states. , 2000, Journal of pharmaceutical sciences.

[35]  Robert J. Levy,et al.  Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery , 1997 .

[36]  Y. Ikada,et al.  Controlled intraocular delivery of ganciclovir with use of biodegradable scleral implant in rabbits , 1995 .

[37]  R. Gurny,et al.  Ocular therapy with nanoparticulate systems for controlled drug delivery , 1985 .