Improved kinetic Monte Carlo simulation of chemical composition-chain length distributions in polymerization processes

Composite binary trees are introduced for an improved kinetic Monte Carlo (kMC) calculation of chemical composition-chain length distributions (CC-CLDs) in polymerization processes, such as the bivariate copolymer composition-CLD (CoC-CLD). For the calculation of the CC-CLD, each leaf node of the main tree, which reflects the number of macromolecules with a given chain length, serves as a root node for a sub-tree containing information on the CC distribution for the macromolecules with the selected chain length. For low maximum chain lengths of 1000, the improvement consists already in a reduction of the kMC operations by a factor between 103 and 106. The approach is illustrated for the calculation of the CoC-CLD in free and atom transfer radical copolymerization of methyl methacrylate and styrene while accounting for potential diffusional limitations. Main focus is on the capability of the algorithm to ensure an accurate calculation of the average copolymer composition including high chain lengths.

[1]  J. L. Duda,et al.  Diffusion in polymer-solvent systems. II. A predictive theory for the dependence of diffusion coefficients on temperature, concentration, and molecular weight , 1977 .

[2]  J. S. Vrentas,et al.  Evaluation of the free‐volume theory of diffusion , 2003 .

[3]  J. L. Duda,et al.  Self-diffusion in polymer-solvent-solvent systems , 1984 .

[4]  A. L. German,et al.  Modelling of emulsion copolymer microstructure , 1992 .

[5]  S. Sosnowski,et al.  Kinetic Monte Carlo Studies on the Importance of the Reaction Scheme in Segmental Exchange of Copolymer Chains , 2012 .

[6]  Nikolaos A. Peppas,et al.  Method of Determination of Initiator Efficiency: Application to UV Polymerizations Using 2,2-Dimethoxy-2-phenylacetophenone , 1994 .

[7]  C. Kiparissides,et al.  Dynamic prediction of the bivariate molecular weight–copolymer composition distribution using sectional-grid and stochastic numerical methods , 2008 .

[8]  Guy Marin,et al.  Kinetic Monte Carlo Modeling of the Sulfinyl Precursor Route for Poly(p-phenylene vinylene) Synthesis , 2011 .

[9]  L. Broadbelt,et al.  Kinetics of Segment Formation in Nitroxide-Mediated Controlled Radical Polymerization: Comparison with Classic Theory , 2010 .

[10]  L. Broadbelt,et al.  Detailed mechanistic modeling of poly(styrene peroxide) pyrolysis using kinetic Monte Carlo simulation , 2012 .

[11]  C. Kiparissides,et al.  From Molecular to Plant-Scale Modeling of Polymerization Processes: A Digital High- Pressure Low-Density Polyethylene Production Paradigm , 2010 .

[12]  Costas Kiparissides,et al.  Development of a General Mathematical Framework for Modeling Diffusion-Controlled Free-Radical Polymerization Reactions , 1992 .

[13]  Brian S. Hawkett,et al.  Chain Transfer to Polymer and Branching in Controlled Radical Polymerizations of n-Butyl Acrylate. , 2009, Macromolecular rapid communications.

[14]  Mamdouh A. Al-Harthi,et al.  Gradient Copolymers by ATRP in Semibatch Reactors: Dynamic Monte Carlo Simulation , 2009 .

[15]  Shiping Zhu,et al.  Model development for semicontinuous production of ethylene and norbornene copolymers having uniform composition , 2009 .

[16]  Robert G. Gilbert,et al.  Consistent values of rate parameters in free radical polymerization systems (Technical Report) , 1992 .

[17]  Dagmar R. D’hooge,et al.  Kinetic Modeling as a Tool to Understand and Improve the Nitroxide Mediated Polymerization of Styrene , 2011 .

[18]  O. J. Sweeting,et al.  Polyethylene: Preparation, Structure, And Properties , 1957 .

[19]  Alexander Penlidis,et al.  Mathematical Modeling of Multicomponent Chain-Growth Polymerizations in Batch, Semibatch, and Continuous Reactors: A Review , 1997 .

[20]  S. Weidner,et al.  Copolymer Composition Determined by LC‐MALDI‐TOF MS Coupling and “MassChrom2D” Data Analysis , 2012 .

[21]  L. Sperling Introduction to physical polymer science , 1986 .

[22]  J. Soares,et al.  Bimodality Criterion for the Chemical Composition Distribution of Ethylene/1‐Olefin Copolymers: Theoretical Development and Experimental Validation , 2011 .

[23]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[24]  U. Schubert,et al.  Recent developments in the detailed characterization of polymers by multidimensional chromatography. , 2012, Journal of chromatography. A.

[25]  C. Barner‐Kowollik,et al.  The role of mid-chain radicals in acrylate free radical polymerization: Branching and scission , 2008 .

[26]  Costas Kiparissides,et al.  Challenges in particulate polymerization reactor modeling and optimization: A population balance perspective , 2006 .

[27]  A. Hamielec,et al.  Bulk polymerization of methyl methacrylate , 1973 .

[28]  G. Marin,et al.  Estimation of intrinsic rate coefficients in vinyl chloride suspension polymerization , 2005 .

[29]  Dagmar R. D’hooge,et al.  The Crucial Role of Diffusional Limitations in Controlled Radical Polymerization , 2013 .

[30]  T. Macko,et al.  Multidimensional high‐temperature liquid chromatography: A new technique to characterize the chemical heterogeneity of Ziegler‐Natta‐based bimodal HDPE , 2013 .

[31]  M. Monteiro,et al.  Kinetic Simulations of Atom Transfer Radical Polymerization (ATRP) in Light of Chain Length Dependent Termination , 2010 .

[32]  R. Young,et al.  Introduction to Polymers , 1983 .

[33]  Manuel M. T. Chakravarty,et al.  A Parallelised High Performance Monte Carlo Simulation Approach for Complex Polymerisation Kinetics , 2007 .

[34]  K. Héberger,et al.  Rate constants for the addition of the 2-cyano-2-propyl radical to alkenes in solution , 1993 .

[35]  Guy Marin,et al.  A Theoretical Exploration of the Potential of ICAR ATRP for One- and Two-Pot Synthesis of Well-Defined Diblock Copolymers , 2013 .

[36]  Michael Wulkow,et al.  Computer Aided Modeling of Polymer Reaction Engineering—The Status of Predici, I‐Simulation , 2008 .

[37]  Krzysztof Matyjaszewski,et al.  Handbook of radical polymerization , 2002 .

[38]  James L White,et al.  Interaction of melt spinning and drawing variables on the crystalline morphology and mechanical properties of high‐density and low‐density polyethylene fiber , 1974 .

[39]  H. Tobita,et al.  Branched structure formation in free radical polymerization of vinyl acetate , 1996 .

[40]  C. Kiparissides,et al.  A multi-scale modeling approach for the prediction of molecular and morphological properties in multi-site catalyst, olefin polymerization reactors , 2005 .

[41]  S. Hamzehlou,et al.  Detailed Microstructure Investigation of Acrylate/Methacrylate Functional Copolymers by Kinetic Monte Carlo Simulation , 2012 .

[42]  R. Szymanski On the determination of the ratios of the propagation rate constants on the basis of the MWD of copolymer chains: A new Monte Carlo algorithm , 2009 .

[43]  Gregory T. Russell,et al.  Chain-length-dependent termination in radical polymerization: Subtle revolution in tackling a long-standing challenge , 2009 .

[44]  D. Achilias,et al.  A Review of Modeling of Diffusion Controlled Polymerization Reactions , 2007 .

[45]  M. Cunningham,et al.  A Semi‐Batch Process for Nitroxide Mediated Radical Polymerization , 2005 .

[46]  Guy Marin,et al.  ARGET ATRP of Butyl Methacrylate: Utilizing Kinetic Modeling To Understand Experimental Trends , 2013 .

[47]  M. Monteiro,et al.  Bimolecular radical termination: New perspectives and insights , 2008 .

[48]  Yu Wang,et al.  Linear Gradient Quality of ATRP Copolymers , 2012 .

[49]  Costas Kiparissides,et al.  Prediction of the Bivariate Molecular Weight - Long Chain Branching Distribution in Highly Branched Polymerization Systems Using Monte Carlo and Sectional Grid Methods , 2007 .

[50]  Costas Kiparissides,et al.  Development of Advanced Software Tools for Computer-Aided Design, Simulation, and Optimization of Polymerization Processes , 2010 .

[51]  B. Klumperman,et al.  Determination of the chemical composition distribution of copolymers of styrene and butadiene by gradient polymer elution chromatography , 1996 .

[52]  P. Lagally,et al.  Zur polymerisation des methacrylsäuremethylesters1 , 1948 .

[53]  Dagmar R. D’hooge,et al.  Atom Transfer Radical Polymerization of Isobornyl Acrylate: A Kinetic Modeling Study , 2010 .

[54]  Krzysztof Matyjaszewski,et al.  Kinetic Modeling of ICAR ATRP , 2012 .

[55]  Walter H. Stockmayer,et al.  Distribution of Chain Lengths and Compositions in Copolymers , 1945 .

[56]  A. L. German,et al.  Chemical composition distribution of styrene-ethyl methacrylate copolymers studied by means of t.l.c/f.i.d : effect of high conversion in various polymerization processes , 1988 .

[57]  Dagmar R. D’hooge,et al.  Origin of the Difference between Branching in Acrylates Polymerization under Controlled and Free Radical Conditions: A Computational Study of Competitive Processes , 2011 .

[58]  Dagmar R. D’hooge,et al.  Kinetic modeling of miniemulsion nitroxide mediated polymerization of styrene: Effect of particle diameter and nitroxide partitioning up to high conversion , 2012 .

[59]  K. Matyjaszewski,et al.  Atom transfer radical polymerization. , 2001, Chemical reviews.

[60]  Dagmar R. D’hooge,et al.  Methodology for Kinetic Modeling of Atom Transfer Radical Polymerization , 2009 .

[61]  Thomas P. Davis,et al.  Critically evaluated rate coefficients for free‐radical polymerization, 2.. Propagation rate coefficients for methyl methacrylate , 2000 .

[62]  J. L. Duda,et al.  Diffusion in polymer—solvent systems. I. Reexamination of the free‐volume theory , 1977 .

[63]  Shiping Zhu,et al.  Effects of diffusion‐controlled reactions on atom‐transfer radical polymerization , 2002 .

[64]  John R. Richards,et al.  Measurement and control of polymerization reactors , 2006, Comput. Chem. Eng..