Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment‐based approaches

In North America, wolverines once occupied a continuous range from Alaska southward to New Mexico. In the lower 48 states, small remnant populations remain only in the northwestern United States. Among these remnant populations, the Montana population has the highest probability of long‐term persistence given its size and proximity to healthy populations in Canada. In this study, we evaluate population genetic structure and gene flow among Montana wolverines using 10 polymorphic microsatellite loci. Bayesian and frequency‐based assignment tests revealed significant population substructure and provide support for at least three subpopulations in Montana. FST values between subpopulations ranged from 0.08 to 0.10 and provide evidence for male‐biased dispersal. The high degree of population substructure and low levels of gene flow contrast results from wolverine population genetic studies in less fragmented landscapes of Alaska and Canada. This study provides additional support for the hypothesis that large carnivore populations of Montana are becoming increasingly fragmented due to human development and disturbance.

[1]  S. Wright,et al.  Isolation by Distance. , 1943, Genetics.

[2]  P. Hedrick,et al.  Genetics and Conservation@@@Genetics and Conservation, A Reference for Managing Wild Animal and Plant Populations. , 1985 .

[3]  G Luikart,et al.  New methods employing multilocus genotypes to select or exclude populations as origins of individuals. , 1999, Genetics.

[4]  K. Crandall,et al.  Gene flow estimates in Utah's cougars imply management beyond Utah , 2001 .

[5]  N. Lehman,et al.  Analysis of coyote mitochondrial DNA genotype frequencies: estimation of the effective number of alleles. , 1991, Genetics.

[6]  Michael A. Banks,et al.  WHICHRUN (version 3.2): a computer program for population assignment of individuals based on multilocus genotype data. , 2000, The Journal of heredity.

[7]  C. Limpus,et al.  Geographic structure of mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flow. , 1997, Genetics.

[8]  Range Experiment Station,et al.  The Scientific basis for conserving forest carnivores , 1994 .

[9]  F. Balloux,et al.  Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[10]  C. Strobeck,et al.  Microsatellite analysis of genetic variation in black bear populations , 1994, Molecular ecology.

[11]  J. Goudet,et al.  Tests for sex‐biased dispersal using bi‐parentally inherited genetic markers , 2002, Molecular ecology.

[12]  C. Davis,et al.  Microsatellite analysis of North American pine marten (Martes americana) populations from the Yukon and Northwest Territories , 2000 .

[13]  M. Hornocker,et al.  Ecology of the wolverine in northwestern Montana , 1981 .

[14]  T. Saitoh,et al.  Sex‐related spatial kin structure in a spring population of grey‐sided voles Clethrionomys rufocanus as revealed by mitochondrial and microsatellite DNA analyses , 1997, Molecular ecology.

[15]  Michael J. Wisdom,et al.  EVALUATION OF LANDSCAPE MODELS FOR WOLVERINES IN THE INTERIOR NORTHWEST, UNITED STATES OF AMERICA , 2003 .

[16]  W. Rice ANALYZING TABLES OF STATISTICAL TESTS , 1989, Evolution; international journal of organic evolution.

[17]  R. Nowak,et al.  Walker's mammals of the world , 1968 .

[18]  R. Noss,et al.  CARNIVORES AS FOCAL SPECIES FOR CONSERVATION PLANNING IN THE ROCKY MOUNTAIN REGION , 2001 .

[19]  G. Luikart,et al.  Detecting Wildlife Poaching: Identifying the Origin of Individuals with Bayesian Assignment Tests and Multilocus Genotypes , 2002 .

[20]  F. Allendorf,et al.  The One‐Migrant‐per‐Generation Rule in Conservation and Management , 1996 .

[21]  M. Beaumont,et al.  Genetic identification of wild and domestic cats (Felis silvestris) and their hybrids using Bayesian clustering methods. , 2001, Molecular biology and evolution.

[22]  O. H. Frankel,et al.  Conservation and Evolution , 1983 .

[23]  I. Stirling,et al.  Microsatellite analysis of population structure in Canadian polar bears , 1995, Molecular ecology.

[24]  C. Davis,et al.  Isolation, variability, and cross‐species amplification of polymorphic microsatellite loci in the family Mustelidae , 1998, Molecular ecology.

[25]  L. Jack Lyon,et al.  The Scientific basis for conserving forest carnivores : American marten, fisher, lynx, and wolverine in the western United States / , 1994 .

[26]  Craig R. Miller,et al.  The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): Implications for conservation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Ohta,et al.  Theoretical aspects of population genetics. , 1972, Monographs in population biology.

[28]  K. Poole,et al.  GENETIC VARIABILITY OF WOLVERINES (GULO GULO) FROM THE NORTHWEST TERRITORIES, CANADA: CONSERVATION IMPLICATIONS , 2000 .

[29]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[30]  E. Ostrander,et al.  Patterns of differentiation and hybridization in North American wolflike canids, revealed by analysis of microsatellite loci. , 1994, Molecular biology and evolution.

[31]  M. Slatkin RARE ALLELES AS INDICATORS OF GENE FLOW , 1985, Evolution; international journal of organic evolution.

[32]  M Slatkin,et al.  Gene flow and the geographic structure of natural populations. , 1987, Science.

[33]  B. Rannala,et al.  Detecting immigration by using multilocus genotypes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  G. Hewitt,et al.  Fine‐scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus) , 1999, Molecular ecology.

[35]  B. White,et al.  Forensic application of repetitive DNA markers to the species identification of animal tissues. , 1994, Journal of forensic sciences.

[36]  D. Tautz,et al.  The microevolution of the Galápagos marine iguana Amblyrhynchus cristatus assessed by nuclear and mitochondrial genetic analyses , 1997 .

[37]  A. Landa,et al.  Four polymorphic microsatellites in wolverine, Gulo gulo. , 1998, Animal genetics.

[38]  F. Barroux Breeding system and genetic variance in the monogamous, semi-social shrew , 1998 .

[39]  M. Eldridge,et al.  Source population of dispersing rock‐wallabies (Petrogale lateralis) idengified by assignment tests on multilocus genotypic data , 2001, Molecular ecology.

[40]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[41]  Resolution of natural groups using iterative assignment tests: an example from two species of Australian native rats (Rattus) , 2001, Molecular ecology.

[42]  Polymorphic trinucleotide microsatellite loci for a neotropical parrot, the green-rumped parrotlet, Forpus passerinus. , 1998, Molecular ecology.

[43]  Ych-chu Wang Molecular ecology , 1992, Journal of Northeast Forestry University.

[44]  Charles C. Miller,et al.  Microsatellite DNA and recent statistical methods in wildlife conservation management: applications in Alpine ibex [Capra ibex (ibex)] , 2002, Molecular ecology.

[45]  G. Turner,et al.  Evidence for male‐biased dispersal in Lake Malawi cichlids from microsatellites , 1999, Molecular ecology.

[46]  C. Strobeck,et al.  Genetic structure of North American wolverine (Gulo gulo) populations , 2001, Molecular ecology.

[47]  L. R. Richardson,et al.  Polymorphic microsatellite DNA markers in red drum (Sciaenops ocellatus) , 1998, Molecular ecology.

[48]  R. Ward,et al.  Variation in Genetic Diversity across the Range of North American Brown Bears , 1998 .

[49]  A Vignal,et al.  Empirical evaluation of genetic clustering methods using multilocus genotypes from 20 chicken breeds. , 2001, Genetics.

[50]  L. Waits,et al.  Mitochondrial DNA Phylogeography of the North American Brown Bear and Implications for Conservation , 1998 .

[51]  Peter Segerström,et al.  Characteristics of dispersal in wolverines , 2001 .

[52]  James A. Baker,et al.  Wild furbearer management and conservation in North America , 1987 .

[53]  S. Piertney,et al.  Microsatellite primers for the Eurasian otter. , 1998, Molecular ecology.

[54]  M. Kawata Sex differences in the spatial distribution of genotypes in the red-backed vole, Clethrionomys rufocanus bedfordiae , 1985 .

[55]  C. Strobeck,et al.  CONNECTIVITY OF PERIPHERAL AND CORE POPULATIONS OF NORTH AMERICAN WOLVERINES , 2002 .

[56]  F. Balloux,et al.  BREEDING SYSTEM AND GENETIC VARIANCE IN THE MONOGAMOUS, SEMI‐SOCIAL SHREW, CROCIDURA RUSSULA , 1998, Evolution; international journal of organic evolution.

[57]  W. Ostheimer THE BIOGEOGRAPHY OF MONTANA BLACK BEAR GENETICS , 1998 .

[58]  V. Lucchini,et al.  Detecting rare introgression of domestic dog genes into wild wolf (Canis lupus) populations by Bayesian admixture analyses of microsatellite variation , 2002, Conservation Genetics.

[59]  S. O’Brien,et al.  Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia, Felidae) , 2001, Molecular ecology.

[60]  C. Gardner The ecology of wolverines in southcentral Alaska , 1985 .

[61]  P. Duchesne,et al.  Potential of microsatellites for individual assignment: the North Atlantic redfish (genus Sebastes) species complex as a case study , 1999, Molecular ecology.