Biomimetic behavior of synthetic particles: from microscopic randomness to macroscopic control.

Randomness is an inherent property of biological systems. In contrast, randomness has been mostly avoided in designing synthetic or artificial systems. Particularly, in designing micro/nano-motors, some researchers have successfully used external fields to gain deterministic control over the directionality of the objects, which otherwise move in completely random directions due to Brownian motion. However, a partial control that preserves a certain degree of randomness can be very useful in certain applications of micro/nano-motors. In this Perspective we review the current progress in establishing autonomous motion of micro/nano-particles that possess controlled randomness, provide insight into the phenomena where macroscopic order originates from microscopic disorder and discuss the resemblance between these artificial systems and biological emergent/collective behaviors.

[1]  Thomas E Mallouk,et al.  Schooling behavior of light-powered autonomous micromotors in water. , 2009, Angewandte Chemie.

[2]  T. M. Vickrey,et al.  Magnetic Field-Flow Fractionation: Theoretical Basis , 1980 .

[3]  Judith P. Armitage,et al.  Light-induced behavioral responses (`phototaxis') in prokaryotes , 2004, Photosynthesis Research.

[4]  Roberto Piazza,et al.  'Thermal forces': colloids in temperature gradients , 2004 .

[5]  Yang Wang,et al.  Hydrazine fuels for bimetallic catalytic microfluidic pumping. , 2007, Journal of the American Chemical Society.

[6]  Darrell Velegol,et al.  Fabrication of colloidal doublets by a salting out-quenching-fusing technique. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[7]  Joseph Wang,et al.  Carbon-nanotube-induced acceleration of catalytic nanomotors. , 2008, ACS nano.

[8]  D. A. Saville,et al.  Colloidal Dispersions: ACKNOWLEDGEMENTS , 1989 .

[9]  Klaas J Hellingwerf,et al.  Bacterial observations: a rudimentary form of intelligence? , 2005, Trends in microbiology.

[10]  Yongan Gu,et al.  The ζ-Potential of Glass Surface in Contact with Aqueous Solutions , 2000 .

[11]  Darrell Velegol,et al.  Nanoscale functionalization and site-specific assembly of colloids by particle lithography. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[12]  Ramin Golestanian,et al.  Propulsion of a molecular machine by asymmetric distribution of reaction products. , 2005, Physical review letters.

[13]  Ben L Feringa,et al.  Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. , 2008, Chemical communications.

[14]  Yoshihito Osada,et al.  Shape memory functions and motility of amphiphilic polymer gels , 2001 .

[15]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[16]  Natalie Andrew,et al.  Chemotaxis in shallow gradients is mediated independently of PtdIns 3-kinase by biased choices between random protrusions , 2007, Nature Cell Biology.

[17]  J A Theriot,et al.  Motility of ActA protein-coated microspheres driven by actin polymerization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Segall,et al.  Cell polarization: Chemotaxis gets CRACking , 1999, Current Biology.

[19]  D. Gracias,et al.  Solvent driven motion of lithographically fabricated gels. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[20]  E. Purcell Life at Low Reynolds Number , 2008 .

[21]  Yoshihito Osada,et al.  Spontaneous Motion of Amphoteric Polymer Gels on Water , 1995 .

[22]  Walter F Paxton,et al.  Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. , 2005, Angewandte Chemie.

[23]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[24]  Robert L. Stavis,et al.  PHOTOTAXIS IN CHLAMYDOMONAS REINHARDTII , 1973, The Journal of cell biology.

[25]  Th. W. Engelmann,et al.  I. Ueber Bacteriopurpurin und seine physiologische Bedeutung , 1888, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[26]  Th. W. Engelmann,et al.  Neue Methode zur Untersuchung der Sauerstoffausscheidung pflanzlicher und thierischer Organismen , 1881, Archiv für die gesamte Physiologie des Menschen und der Tiere.

[27]  Venu Gangur,et al.  Chemokines in health and disease. , 2002, Veterinary immunology and immunopathology.

[28]  J. Brady,et al.  Osmotic propulsion: the osmotic motor. , 2008, Physical review letters.

[29]  Thomas E. Mallouk,et al.  Autonomously Moving Local Nanoprobes in Heterogeneous Magnetic Fields , 2007 .

[30]  Thomas E. Mallouk,et al.  Developing Catalytic Nanomotors , 2007 .

[31]  D. Prieve,et al.  Chemiphoresis-A Method for Deposition of Polymer Coatings without Applied Electric Current , 1978 .

[32]  P. Murphy,et al.  Chemokines and the molecular basis of cancer metastasis. , 2001, The New England journal of medicine.

[33]  C. Bain,et al.  Motion of liquids on surfaces. , 2001, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  J. Yeomans,et al.  Hydrodynamic interaction between two swimmers at low Reynolds number. , 2007, Physical review letters.

[35]  P. Hawkins,et al.  Moving towards a Better Understanding of Chemotaxis , 2008, Current Biology.

[36]  Ayusman Sen,et al.  Catalytic motors for transport of colloidal cargo. , 2008, Nano letters.

[37]  J. Rivet,et al.  Stochastic Models of Thermodiffusion , 2009 .

[38]  T. Mallouk,et al.  Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[39]  H. Watarai,et al.  Magnetophoresis and electromagnetophoresis of microparticles in liquids , 2004, Analytical and bioanalytical chemistry.

[40]  John L. Anderson,et al.  Colloid Transport by Interfacial Forces , 1989 .

[41]  A. Najafi,et al.  Simple swimmer at low Reynolds number: three linked spheres. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  G. Whitesides,et al.  Autonomous Movement and Self‐Assembly , 2002 .

[43]  J. Avron,et al.  Pushmepullyou: an efficient micro-swimmer , 2005, math-ph/0501049.

[44]  Anna C. Balazs,et al.  Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion. , 2008, ACS nano.

[45]  Walter F Paxton,et al.  Motility of catalytic nanoparticles through self-generated forces. , 2005, Chemistry.

[46]  Takuya Akashi,et al.  Chemokine receptors in cancer metastasis and cancer cell‐derived chemokines in host immune response , 2007, Cancer science.

[47]  T. Meyer,et al.  A local coupling model and compass parameter for eukaryotic chemotaxis. , 2005, Developmental cell.

[48]  Dieter Braun,et al.  Why molecules move along a temperature gradient , 2006, Proceedings of the National Academy of Sciences.

[49]  D B Dusenbery,et al.  Spatial sensing of stimulus gradients can be superior to temporal sensing for free-swimming bacteria. , 1998, Biophysical journal.

[50]  Darrell Velegol,et al.  Chemo and phototactic nano/microbots. , 2009, Faraday discussions.

[51]  R. Macnab,et al.  The gradient-sensing mechanism in bacterial chemotaxis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[52]  D. Velegol,et al.  Chemotaxis of nonbiological colloidal rods. , 2007, Physical review letters.

[53]  Auke Meetsma,et al.  Catalytic molecular motors: fuelling autonomous movement by a surface bound synthetic manganese catalase. , 2005, Chemical communications.

[54]  H. Berg Motile Behavior of Bacteria , 2000 .

[55]  Ramin Golestanian,et al.  Mechanical response of a small swimmer driven by conformational transitions. , 2007, Physical review letters.

[56]  P. Devreotes,et al.  Eukaryotic Chemotaxis: Distinctions between Directional Sensing and Polarization* , 2003, Journal of Biological Chemistry.

[57]  R Di Leonardo,et al.  Colloidal attraction induced by a temperature gradient. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[58]  J. Adler,et al.  "Decision"-Making in Bacteria: Chemotactic Response of Escherichia coli to Conflicting Stimuli , 1974, Science.

[59]  Yanyan Cao,et al.  Catalytic nanomotors: autonomous movement of striped nanorods. , 2004, Journal of the American Chemical Society.

[60]  N. Fiala The greenhouse hamburger. , 2009, Scientific American.

[61]  F. Orr,et al.  Cancer Cell Chemotaxis: Mechanisms and Influence on Site-Specific Tumor Metastasis , 1994 .

[62]  M. Moore,et al.  The role of chemoattraction in cancer metastases. , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[63]  D Fleishman,et al.  Mesoscale engines by nonlinear friction. , 2007, Nano letters.

[64]  Satoshi Nakata,et al.  Characteristic self-motion of a camphor boat sensitive to ester vapor. , 2005, Langmuir : the ACS journal of surfaces and colloids.

[65]  Seyyed Nader Rasuli,et al.  Soret motion of a charged spherical colloid. , 2007, Physical review letters.

[66]  Helen E Blackwell,et al.  Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. , 2008, Chemical Society reviews.

[67]  Miguel Cámara,et al.  Extracellular communication in bacteria , 2005 .

[68]  Darrell Velegol,et al.  Simple fabrication of metallic colloidal doublets having electrical connectivity. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[69]  Andrea Prosperetti,et al.  The ‘acoustic scallop’: a bubble-powered actuator , 2006 .

[70]  Yoshihito Osada,et al.  Motion of Polymer Gels by Spreading Organic Fluid on Water , 1996 .

[71]  M. Giglio,et al.  Soret-Type Motion of Macromolecules in Solution , 1977 .

[72]  V. Fuster,et al.  Coronary artery disease: pathogenesis and acute coronary syndromes. , 2001, The Mount Sinai journal of medicine, New York.

[73]  B. Brembs,et al.  Order in Spontaneous Behavior , 2007, PloS one.

[74]  Alex Kentsis,et al.  Correspondence patterns: Mechanisms and models of human dynamics , 2006, Nature.

[75]  Ramin Golestanian,et al.  Anomalous diffusion of symmetric and asymmetric active colloids. , 2009, Physical review letters.

[76]  G. Lagaly,et al.  B. V. Derjaguin, N. V. Churaev, V. M. Müller: Surface Forces, Consultants Bureau, New York, London 1987. 440 Seiten, Preis: $ 95,00 , 1988 .

[77]  J. Segall,et al.  Lamellipodia in invasion. , 2001, Seminars in cancer biology.

[78]  Kalayil Manian Manesh,et al.  Ultrafast catalytic alloy nanomotors. , 2008, Angewandte Chemie.

[79]  R T Tranquillo,et al.  A stochastic model for leukocyte random motility and chemotaxis based on receptor binding fluctuations , 1988, The Journal of cell biology.

[80]  R. Golestanian,et al.  Designing phoretic micro- and nano-swimmers , 2007, cond-mat/0701168.

[81]  Roberto Piazza,et al.  Thermophoresis in colloidal suspensions , 2008 .

[82]  D. Braun,et al.  Thermodiffusion of charged colloids: single-particle diffusion. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[83]  Thomas E. Mallouk,et al.  Interactions Between Suspended Nanowires and Patterned Surfaces , 2002 .

[84]  Yang Wang,et al.  Catalytically induced electrokinetics for motors and micropumps. , 2006, Journal of the American Chemical Society.

[85]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .