Substrate selection for high‐temperature superconducting thin films

Substrate selection presents particular challenges for the production of high‐quality high‐temperature superconducting (HTS) thin films suitable for applications. Because the substrate is generally a passive component, it is often ignored and assumed to have a negligible effect on the structure residing on top of it. There is also a technological motivation to use substrates that conventional wisdom would argue are unlikely to support high‐quality HTS films. These facts have led to rediscovery of many of the fundamental issues governing the role of the substrate in determining the properties of the thin film(s) it supports. For this reason, the study of issues in substrate selection for HTS materials presents a microcosm for substrate selection more generally. We consider the major issues governing the role of the substrate in HTS thin‐film technology and discuss many of the material classes and specific materials that have been studied for their suitability as substrates for HTS films.

[1]  B. Wilkens,et al.  Superconducting YBa2Cu3O7−x thin films on alkaline earth fluorides , 1989 .

[2]  J. Shewchun,et al.  Characteristics of Y‐Ba‐Cu‐O superconductor films on GaAs with an Al2O3 or AlGaO3 buffer layer , 1991 .

[3]  K. Sakuta,et al.  Improved Surface Crystallinity of MgO Crystal Substrate through Annealing in Oxygen Atmosphere , 1992 .

[4]  H. Lang,et al.  Structure and growth of YBa2Cu3O7−δ thin films on Mg2TiO4 (001): I. Growth conditions and film structure: transmission electron microscopy , 1992 .

[5]  owski,et al.  CaNdAlO4 perovskite substrate for microwave and far‐infrared applications of epitaxial high Tc superconducting thin films , 1990 .

[6]  Jian Li,et al.  Growth of YBa2Cu3O7 thin films on MgO: The effect of substrate preparation , 1990 .

[7]  G. Scilla,et al.  Processing of La1.8Sr0.2CuO4 and YBa2Cu3O7 superconducting thin films by dual‐ion‐beam sputtering , 1988 .

[8]  N. Tanabe,et al.  In-plane texturing control of Y-Ba-Cu-O thin films on polycrystalline substrates by ion-beam-modified intermediate buffer layers , 1993, IEEE Transactions on Applied Superconductivity.

[9]  B. Wessels,et al.  Formation of oriented high Tc superconducting Bi‐Sr‐Ca‐Cu‐O thin films on silver substrates by organometallic chemical vapor deposition , 1990 .

[10]  N. Tanabe,et al.  Improvement of Jc-B characteristics in biaxially aligned Y-Ba-Cu-O thin films on metallic substrate , 1993 .

[11]  S. Ogale,et al.  Thin and ultra-thin epitaxial films of YBa2Cu3O7−δ deposited on LiNbO3 substrates by pulsed excimer laser ablation , 1992 .

[12]  J. Narayan,et al.  In situ single‐chamber laser processing of YBa2Cu3O7−δ superconducting thin films on yttria‐stabilized zirconia buffered (100)GaAs , 1991 .

[13]  H. Lang,et al.  Structure and growth of YBa2Cu3O7−δ thin films on Mg2TiO4 (001): II. Surface morphology: scanning probe methods , 1992 .

[14]  Dean J. Miller,et al.  Transmission electron microscopic characterization of metal-organic chemical vapor deposition-derived superconducting Tl2Ba2Ca1Cu2Oχ thin films on Au substrates , 1993 .

[15]  M. Varela,et al.  Superconducting YBa2Cu3O7 films deposited on Si (100) substrates with CeO2 buffer layers by laser ablation , 1992 .

[16]  G. V. Negrete,et al.  Comparisons of high temperature superconductor thin films on various substrates for microwave applications , 1991 .

[17]  G. Zaharchuk,et al.  Extension of the bi‐epitaxial Josephson junction process to various substrates , 1991 .

[18]  S. W. Goodyear,et al.  Physical vapour deposition techniques for the growth of YBa2Cu3O7 thin films , 1990 .

[19]  P. Kettunen,et al.  Superconducting high-Jc coatings on copper substrates by RF magnetron sputtering , 1992 .

[20]  D. Frank Superconductor — semiconductor hybrid transistors , 1990 .

[21]  R. Noufi,et al.  Science and Technology of Thin Film Superconductors 2 , 1989 .

[22]  B. Hunt,et al.  Growth of YBa2Cu3O7−δ on alkaline earth flouride substrates and thin films , 1993 .

[23]  C. R. Liu,et al.  Deposition of high Tc superconductor thin films on silicon substrates by rapid thermal annealing and with a TiN/Ti/Ag buffer layer , 1992 .

[24]  J. Preston,et al.  Evaluation of LaSrGaO4 as a substrate for YBa2Cu3O7−δ , 1994 .

[25]  N. S. Nogar,et al.  Epitaxial CeO2 films as buffer layers for high‐temperature superconducting thin films , 1991 .

[26]  T. Van Duzer,et al.  Principles of Superconductive Devices and Circuits , 1981 .

[27]  N. Klein,et al.  High quality epitaxy of YBa2Cu3O7−x on silicon‐on‐sapphire with the multiple buffer layer YSZ/CeO2 , 1993 .

[28]  S. Ogale,et al.  Preparation of high Tc superconductor thin films of YBaCuO on crystalline Garnet substrates , 1991 .

[29]  W. L. Holstein,et al.  Effect of single crystal substrates on the growth and properties of superconducting Tl_2Ba_2CaCu_2O_8 films , 1993 .

[30]  D. Christen,et al.  Y‐Ba‐Cu‐O thin films grown on rigid and flexible polycrystalline yttria‐stabilized zirconia by pulsed laser ablation , 1990 .

[31]  D. Shaw,et al.  Preservation of substrate crystal and enhancement of YBa2Cu3O7-x thin film growth using YSZ/Si3N4 as a buffer layer , 1992 .

[32]  Hiroshi Maeda,et al.  A New High-T c Oxide Superconductor without a Rare Earth Element , 1988 .

[33]  Harold Weinstock,et al.  The New superconducting electronics , 1993 .

[34]  Xiaohui Zhu,et al.  YBa2Cu3O7−δ thin films and microstrip resonators on MgLaAl11O19 substrates , 1993 .

[35]  H. Kohler,et al.  Mixed-perovskite substrates for high-Tc superconductors , 1991 .

[36]  B. Hunt,et al.  Y-Ba-Cu-O superconducting thin films by simultaneous or sequential evaporation , 1988 .

[37]  E. Rosencher,et al.  Heterostructures on silicon : one step further with silicon , 1989 .

[38]  High Tc Y‐Ba‐Cu‐O thin films on Si substrates , 1989 .

[39]  M. S. Hegde,et al.  Ferrimagnetic rare-earth orthoferrites: a new, magnetic substrate for the growth of epitaxial Y-Ba-Cu-O thin films , 1989 .

[40]  M. Fukutomi,et al.  Laser deposition of YBa2Cu3Oy thin films on a metallic substrate with biaxially textured YSZ buffer layers prepared by modified bias sputtering , 1994 .

[41]  S. Nagaya,et al.  Characteristics of high J/sub c/ Y-Ba-Cu-O tape on metal substrate prepared by chemical vapor deposition , 1993, IEEE Transactions on Applied Superconductivity.

[42]  Frederick C. Wellstood,et al.  Thin‐film multilayer interconnect technology for YBa2Cu3O7−x , 1994 .

[43]  G. J. Valco,et al.  10 GHz YBa2Cu3O7-delta Superconducting Ring Resonators on NdGaO3 Substrates , 1993 .

[44]  D. Christen,et al.  High-temperature superconductors: Fundamental properties and novel materials processing , 1990 .

[45]  T. Satoh,et al.  Highly oriented Hg‐Ba‐Ca‐Cu‐O superconducting thin films , 1993 .

[46]  U. Mishra,et al.  High T c YBa 2 Cu 3 O 7−x Thin Films on GaAs-Based Substrate Using MgO Buffer Layers with Sb Passivation Technique 1 , 1992 .

[47]  R. Roy,et al.  Surface crystallographic structure compatibility between substrates and high T_c (YBCO) thin films , 1994 .

[48]  M. Reeves,et al.  Off-Axis Growth of Y 1 Ba 2 Cu 3 O 7-y on Different Substrates , 1992 .

[49]  Q. Jia,et al.  High temperature superconducting YBa2Cu3O7−x films on metallic substrates grown in situ by off‐axis sputtering , 1992 .

[50]  S. Kinouchi,et al.  YBa2Cu3O7 Growth on Metal Substrates with SrTiO3 Buffer Layer by Metal-Organic Chemical Vapor Deposition , 1993 .

[51]  H. Lang,et al.  Bulk and surface structure of epitaxial YBa2Cu3O7−δ thin films grown on Mg2TiO4 (001) substrate layers Part II. Orientation and surface structure , 1993 .

[52]  H. Takei,et al.  Preparation of high-Tc Bi-Sr-Ca-Cu-O films on MgO substrates by the solvent-evaporation epitaxial (SEE) method , 1990 .

[53]  R. V. Dover,et al.  Comparison of Ba_2YCu_3O_7−δ thin films grown on various perovskite substrates by coevaporation , 1992 .

[54]  W. L. Holstein,et al.  High performance superconducting thin films on large area substrates , 1993, IEEE Transactions on Applied Superconductivity.

[55]  T. C. Huang,et al.  The effects of substrate temperature on the superconducting properties of Tl2Ca2Ba2Cu3O10 films sputter-deposited from stoichiometric oxide targets , 1989 .

[56]  M. Marinelli,et al.  Transport critical current density in epitaxial Bi2Sr2CaCu2O8+x films: Effects of the substrate twinning , 1990 .

[57]  A. V. Pushkarev,et al.  Fabrication by LPE and characterization of YBa/sub 2/Cu/sub 3/O/sub 7- delta / thin films on NdGaO/sub 3/ substrates , 1993, IEEE Transactions on Applied Superconductivity.

[58]  Bernard Raveau,et al.  a-Axis oriented superconductive YBCO thin films: Growth mechanism on MgO substrate , 1992 .

[59]  K. Nassau,et al.  Strontium titanate: An index to the literature on properties and the growth of single crystals , 1988 .

[60]  W. Hayes Crystals with the fluorite structure , 1974 .

[61]  D. Christen,et al.  Epitaxial superconducting thin films of YBa2Cu3O7−x on KTaO3 single crystals , 1989 .

[62]  N. Magnea,et al.  Strain relaxation in low lattice mismatch epitaxy of CdTe/Cd0.97Zn0.03Te (001) by channeling , 1988 .

[63]  J. Narayan,et al.  Pulsed laser deposition of Y1Ba2Cu3O7- delta films on polycrystalline metallic substrates with TiN buffer layers , 1993 .

[64]  K. Delin,et al.  Foundations of Applied Superconductivity , 1991 .

[65]  S. Geller,et al.  Crystallographic studies of perovskite‐like compounds. II. Rare earth alluminates , 1956 .

[66]  S. Miyazawa,et al.  New substrate PrGaO sub 3 for a high T sub c superconducting YBa sub 2 Cu sub 3 O sub x epitaxial film , 1990 .

[67]  McGuire,et al.  Critical-current measurements in epitaxial films of YBa2Cu , 1987, Physical review letters.

[68]  T. Venkatesan,et al.  Interactions of YBa2Cu3O7-x thin films with alkaline earth fluoride substrates , 1993 .

[69]  Z. Ivanov,et al.  Effects of substrate temperature on the microstructure of YBa2Cu3O7-δ films grown on (001) Y-ZrO2 substrates , 1992 .

[70]  S. Chan DEGENERATE EPITAXY, COINCIDENCE EPITAXY AND ORIGIN OF "SPECIAL" BOUNDARIES IN THIN FILMS , 1994 .

[71]  A. Hermann,et al.  Superconductivity in the rare-earth-free Tl–Ba–Cu–O system above liquid-nitrogen temperature , 1988, Nature.

[72]  E. Hu,et al.  Epitaxial MgO buffer layers for YBa2Cu3O7−x thin film on GaAs , 1992 .

[73]  M. Hervieu,et al.  a-Axis oriented YBa2Cu3O7 superconducting thin film grown on MgO substrate , 1992 .

[74]  Nathan Newman,et al.  Microwave surface resistance of epitaxial YBa2Cu3O7 thin films on sapphire , 1990 .

[75]  J. Mannhart,et al.  Sr2RuO4: A metallic substrate for the epitaxial growth of YBa2Cu3O7−δ , 1992 .

[76]  T. Nabatame,et al.  Properties of Tl2Ba2Ca1Cu2Ox Thin Films Prepared on Polycrystalline Yttria-Stabilized Zirconia Substrate with a Tc of 106 K and a Jc of 1.7×104 A/cm2 by Dual-Magnetron Sputtering and Post Annealing , 1991 .

[77]  Chu,et al.  Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. , 1987, Physical review letters.

[78]  M. Pambianchi,et al.  Sr/sub 2/AlTaO/sub 6//YBa/sub 2/Cu/sub 3/O/sub 7/ heterostructures for superconducting device applications , 1993, IEEE Transactions on Applied Superconductivity.

[79]  A. Segmüller,et al.  Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films , 1988 .

[80]  G. S. Lee,et al.  Low-loss substrate for epitaxial growth of high-temperature superconductor , 1988 .

[81]  J. R. Zhang,et al.  Microwave compatible YBa2Cu3O7−δ films on (001)MgF2 substrates , 1994 .

[82]  Ken Sakuta,et al.  YBaCuO Thin-Film Growth on Electrooptic LiNbO3 Substrate with Buffer Layer , 1992 .

[83]  Z. Ivanov,et al.  YBa2Cu3O7-x films on yttria-stabilized ZrO2 substrates : influence of the substrate morphology , 1994 .

[84]  H. Lang,et al.  Mg2TiO4 as a novel substrate for high‐temperature superconducting thin films , 1992 .

[85]  Robert Benjamin Laibowitz,et al.  Critical-current measurements in epitaxial films of YBa/sub 2/Cu/sub 3/O/sub 7-//sub x/ compound , 1987 .

[86]  S. Miyazawa Surface roughening associated with ∼140 °C transition of a LaGaO3 substrate for high Tc superconducting films , 1989 .

[87]  C. Brandle,et al.  Thermal analysis of rare earth gallates and aluminates , 1990 .

[88]  D. McGinnis,et al.  Single superconducting thin film devices for applications in high T/sub c/ materials circuits , 1989 .

[89]  R. Howard,et al.  Reproducible technique for fabrication of thin films of high transition temperature superconductors , 1987 .

[90]  S. Kawai,et al.  a‐axis oriented growth of YBa2Cu3O7−y films on LaSrGaO4(100) substrates , 1992 .

[91]  Kiejin Lee,et al.  Patterned Y1Ba2Cu3Oy films on Y2BaCuO5 substrates by a surface diffusion process , 1992 .

[92]  I. Wolff,et al.  Dielectric properties of substrates for deposition of high-T/sub c/ thin films up to 40 GHz , 1992 .

[93]  Kiejin Lee,et al.  Superconducting Bi‐Sr‐Ca‐Cu‐O films formed by diffusion of metallic bismuth on Sr2Ca2Cu4Oy substrates , 1991 .

[94]  R. D. Shannon Dielectric polarizabilities of ions in oxides and fluorides , 1993 .

[95]  M. Berkowski,et al.  Problems in Epitaxial Growth of High-Tc Superconductors , 1991 .

[96]  Marek Berkowski,et al.  High-T/sub c/ thin films on low microwave loss alkaline-rare-earth-aluminate crystals , 1991 .

[97]  N. Tanabe,et al.  In‐plane aligned YBa2Cu3O7−x thin films deposited on polycrystalline metallic substrates , 1992 .

[98]  V. J. Fratello,et al.  Preparation of perovskite oxides for high T_c superconductor substrates , 1990 .

[99]  B. Tsaur,et al.  Heteroepitaxy on silicon II , 1987 .

[100]  H. Choi,et al.  Heteroepitaxy on silicon , 1988 .

[101]  C. Heiden,et al.  Fully textured growth of Y1Ba2Cu3O7−δ films by sputtering on LiNbO3 substrates , 1989 .

[102]  Ian H. Campbell,et al.  Properties of YBa2Cu3O7−δ thick films on flexible buffered metallic substrates , 1995 .

[103]  J. Bravman,et al.  Growth of YBa2Cu3O7−δ on vicinally polished MgO substrates , 1990 .

[104]  P. Lerch,et al.  Epitaxial growth of superconducting YBa2Cu3O7−x on Si(100) with CaF2 as intermediate buffer , 1992 .

[105]  B. Chai,et al.  Low‐loss substrate for microwave application of high‐temperature superconductor films , 1990 .