Optimal Mean-Precision Classifier

For pattern recognition problems where a small set of relevant objects should be retrieved from a (very) large set of irrelevant objects, standard evaluation criteria are often insufficient. For these situations often the precision-recall curve is used. An often-employed scalar measure derived from this curve is the mean precision, that estimates the average precision over all values of the recall. This performance measure, however, is designed to be non-symmetric in the two classes and it appears not very simple to optimize. This paper presents a classifier that approximately maximizes the mean precision by a collection of simple linear classifiers.

[1]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[2]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[3]  Ulf Brefeld,et al.  {AUC} maximizing support vector learning , 2005 .

[4]  Rama Chellappa,et al.  Unsupervised Texture Segmentation Using Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Ulf Brefeld,et al.  Co-EM support vector learning , 2004, ICML.

[6]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[7]  Peter A. Flach,et al.  Learning Decision Trees Using the Area Under the ROC Curve , 2002, ICML.

[8]  Michal Haindl,et al.  Model-Based Texture Segmentation , 2004, ICIAR.

[9]  Giuseppe Scarpa,et al.  Unsupervised Texture Segmentation by Spectral-Spatial-Independent Clustering , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[10]  Peter A. Flach The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics , 2003, ICML.

[11]  Ronen Basri,et al.  Hierarchy and adaptivity in segmenting visual scenes , 2006, Nature.

[12]  J. A. Anderson,et al.  7 Logistic discrimination , 1982, Classification, Pattern Recognition and Reduction of Dimensionality.

[13]  Josiane Zerubia,et al.  A Hierarchical Finite-State Model for Texture Segmentation , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[14]  B. S. Manjunath,et al.  Unsupervised Segmentation of Color-Texture Regions in Images and Video , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Josef Kittler,et al.  Weighting Factors in Multiple Expert Fusion , 1997, BMVC.

[16]  Glenn Healey,et al.  Markov Random Field Models for Unsupervised Segmentation of Textured Color Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  J. M. Hans du Buf,et al.  A review of recent texture segmentation and feature extraction techniques , 1993 .

[18]  Michal Haindl,et al.  Unsupervised Texture Segmentation Using Multiple Segmenters Strategy , 2007, MCS.

[19]  David G. Stork,et al.  Pattern Classification , 1973 .

[20]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[21]  Laveen N. Kanal,et al.  Classification, Pattern Recognition and Reduction of Dimensionality , 1982, Handbook of Statistics.

[22]  Michal Haindl,et al.  Texture segmentation benchmark , 2008, 2008 19th International Conference on Pattern Recognition.

[23]  Arnold W. M. Smeulders,et al.  Color texture measurement and segmentation , 2005, Signal Process..

[24]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[25]  Michal Haindl,et al.  A Multispectral Image Line Reconstruction Method , 1992 .

[26]  Michal Haindl,et al.  Unsupervised Texture Segmentation Using Multispectral Modelling Approach , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[27]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[28]  Daniel P. Huttenlocher,et al.  Efficient Graph-Based Image Segmentation , 2004, International Journal of Computer Vision.

[29]  Peter Meer,et al.  Synergism in low level vision , 2002, Object recognition supported by user interaction for service robots.

[30]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .