Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide.

[1]  R. Benz,et al.  Detergent-like activity and alpha-helical structure of warnericin RK, an anti-Legionella peptide. , 2009, Biophysical journal.

[2]  P. François,et al.  Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance , 2009, BMC Genomics.

[3]  M. Jules,et al.  Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila , 2009, Molecular microbiology.

[4]  Y. Héchard,et al.  δ-hemolysin, an update on a membrane-interacting peptide , 2009, Peptides.

[5]  P. F. Almeida,et al.  The activity of the amphipathic peptide delta-lysin correlates with phospholipid acyl chain structure and bilayer elastic properties. , 2008, Biophysical journal.

[6]  C. Nast,et al.  Analysis of Cell Membrane Characteristics of In Vitro-Selected Daptomycin-Resistant Strains of Methicillin-Resistant Staphylococcus aureus , 2008, Antimicrobial Agents and Chemotherapy.

[7]  Y. Héchard,et al.  Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri , 2008, Peptides.

[8]  C. Rock,et al.  Membrane lipid homeostasis in bacteria , 2008, Nature Reviews Microbiology.

[9]  M. Heidtman,et al.  Phosphatidylcholine synthesis is required for optimal function of Legionella pneumophila virulence determinants , 2007, Cellular microbiology.

[10]  R. Pogni,et al.  Membrane insertion and bilayer perturbation by antimicrobial peptide CM15. , 2007, Biophysical journal.

[11]  Siewert J Marrink,et al.  Antimicrobial peptides in action. , 2006, Journal of the American Chemical Society.

[12]  A. Pokorny,et al.  Temperature and composition dependence of the interaction of delta-lysin with ternary mixtures of sphingomyelin/cholesterol/POPC. , 2006, Biophysical journal.

[13]  B. Bechinger,et al.  Detergent-like actions of linear amphipathic cationic antimicrobial peptides. , 2006, Biochimica et biophysica acta.

[14]  M. Jules,et al.  Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila , 2006, Cellular microbiology.

[15]  M. Zasloff Defending the epithelium , 2006, Nature Medicine.

[16]  O. Kuipers,et al.  Transcriptome Analysis Reveals Mechanisms by Which Lactococcus lactis Acquires Nisin Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[17]  Kun Zhu,et al.  Exogenous Isoleucine and Fatty Acid Shortening Ensure the High Content of Anteiso-C15:0 Fatty Acid Required for Low-Temperature Growth of Listeria monocytogenes , 2005, Applied and Environmental Microbiology.

[18]  M. Steinert,et al.  Isolation and characterization of a Staphylococcus warneri strain producing an anti-Legionella peptide. , 2005, FEMS microbiology letters.

[19]  R. Drijber,et al.  Survey of Extreme Solvent Tolerance in Gram-Positive Cocci: Membrane Fatty Acid Changes in Staphylococcus haemolyticus Grown in Toluene , 2005, Applied and Environmental Microbiology.

[20]  P. F. Almeida,et al.  Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. , 2005, Biochemistry.

[21]  M. Sarvas,et al.  Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. , 2005, Microbiology.

[22]  K. Brogden Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? , 2005, Nature Reviews Microbiology.

[23]  D. Bayles,et al.  Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. , 2005, Microbiology.

[24]  B. Fields,et al.  Legionella pneumophila associated with the protozoan Hartmannella vermiformis in a model multi-species biofilm has reduced susceptibility to disinfectants , 2005, Biofouling.

[25]  C. Buchrieser,et al.  Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity , 2004, Nature Genetics.

[26]  I. Chou,et al.  The Genomic Sequence of the Accidental Pathogen Legionella pneumophila , 2004, Science.

[27]  O. Geiger,et al.  Biosynthesis of phosphatidylcholine in bacteria. , 2003, Progress in lipid research.

[28]  Michael R. Yeaman,et al.  Mechanisms of Antimicrobial Peptide Action and Resistance , 2003, Pharmacological Reviews.

[29]  T. Montville,et al.  Temperature- and Surfactant-Induced Membrane Modifications That Alter Listeria monocytogenes Nisin Sensitivity by Different Mechanisms , 2002, Applied and Environmental Microbiology.

[30]  P. Hoffman,et al.  Intracellular Growth of Legionella pneumophila Gives Rise to a Differentiated Form Dissimilar to Stationary-Phase Forms , 2002, Infection and Immunity.

[31]  A. Pokorny,et al.  Mechanism and Kinetics of δ-Lysin Interaction with Phospholipid Vesicles† , 2002 .

[32]  Barry S. Fields,et al.  Legionella and Legionnaires' Disease: 25 Years of Investigation , 2002, Clinical Microbiology Reviews.

[33]  J. Hacker,et al.  Legionella pneumophila: an aquatic microbe goes astray. , 2002, FEMS microbiology reviews.

[34]  Andreas Peschel,et al.  How do bacteria resist human antimicrobial peptides? , 2002, Trends in microbiology.

[35]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[36]  P. Martikainen,et al.  The Microbial Community Structure of Drinking Water Biofilms Can Be Affected by Phosphorus Availability , 2002, Applied and Environmental Microbiology.

[37]  S. Miller,et al.  Salmonella typhimurium outer membrane remodeling: role in resistance to host innate immunity. , 2001, Microbes and infection.

[38]  O. Geiger,et al.  Novel pathway for phosphatidylcholine biosynthesis in bacteria associated with eukaryotes. , 2001, Journal of biotechnology.

[39]  R. Hancock,et al.  The role of antimicrobial peptides in animal defenses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Bayer,et al.  In Vitro Resistance of Staphylococcus aureus to Thrombin-Induced Platelet Microbicidal Protein Is Associated with Alterations in Cytoplasmic Membrane Fluidity , 2000, Infection and Immunity.

[41]  M. Kriechbaum,et al.  Effect of staphylococcal delta-lysin on the thermotropic phase behavior and vesicle morphology of dimyristoylphosphatidylcholine lipid bilayer model membranes. Differential scanning calorimetric, 31P nuclear magnetic resonance and Fourier transform infrared spectroscopic, and X-ray diffraction studi , 1999, Biochemistry.

[42]  H. Shuman,et al.  The Legionella pneumophila rpoS Gene Is Required for Growth within Acanthamoeba castellanii , 1999, Journal of bacteriology.

[43]  M. D. da Costa,et al.  Usefulness of Fatty Acid Composition for Differentiation of Legionella Species , 1999, Journal of Clinical Microbiology.

[44]  N J Russell,et al.  Membranes as a target for stress adaptation. , 1995, International journal of food microbiology.

[45]  H. Scaife,et al.  Intraphagocytic growth induces an antibiotic-resistant phenotype of Legionella pneumophila , 1995, Antimicrobial agents and chemotherapy.

[46]  H. Shuman,et al.  Mutagenesis of Legionella pneumophila using Jn903 dllIacZ: identification of a growth‐phase‐regulated pigmentation gene , 1994, Molecular microbiology.

[47]  P. Lambert,et al.  Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila , 1993, Infection and immunity.

[48]  R. Wait,et al.  Physiology and morphology of Legionella pneumophila in continuous culture at low oxygen concentration. , 1992, Journal of general microbiology.

[49]  M. R. Brown,et al.  Relationship between Legionella pneumophila and Acanthamoeba polyphaga: physiological status and susceptibility to chemical inactivation , 1992, Applied and environmental microbiology.

[50]  T. Kaneda,et al.  Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. , 1991, Microbiological reviews.

[51]  J. Dufourcq,et al.  δ‐Haemolysin from Staphylococcus aureus and model membranes , 1990 .

[52]  C. W. Moss,et al.  Cellular fatty acid compositions and isoprenoid quinone contents of 23 Legionella species , 1989, Journal of clinical microbiology.

[53]  M. Sansom,et al.  Properties of ion channels formed by Staphylococcus aureus δ-toxin , 1988 .

[54]  G. Fourche,et al.  Morphological changes of phosphatidylcholine bilayers induced by melittin: vesicularization, fusion, discoidal particles. , 1986, Biochimica et biophysica acta.

[55]  L. Pine,et al.  Role of keto acids and reduced-oxygen-scavenging enzymes in the growth of Legionella species , 1986, Journal of clinical microbiology.

[56]  B. Iglewski,et al.  Isolation and characterization of the Legionella pneumophila outer membrane , 1984, Journal of bacteriology.

[57]  C. W. Moss,et al.  Further studies of the cellular fatty acid composition of Legionnaires disease bacteria , 1979, Journal of clinical microbiology.

[58]  J. Feeley,et al.  Cellular lipids of the Legionnaires' disease bacterium. , 1979, Annals of internal medicine.

[59]  C. W. Moss,et al.  Cellular fatty acid composition of isolates from Legionnaires disease , 1977, Journal of clinical microbiology.

[60]  R. Schoenfeld,et al.  Comparative Genomics of Listeria Species , 1976 .

[61]  J. Folch,et al.  A simple method for the isolation and purification of total lipides from animal tissues. , 1957, The Journal of biological chemistry.

[62]  V. Nizet Antimicrobial peptide resistance mechanisms of human bacterial pathogens. , 2006, Current issues in molecular biology.

[63]  Y. Kwaik,et al.  Cell biology of the intracellular infection by Legionella pneumophila. , 2004, Microbes and infection.