Control of parameter-varying systems

In this chapter the problem of feedback control of uncertain systems is considered, with a special attention to the control of polytopic systems. To properly introduce the results, let us reconsider the stability analysis problem for an uncertain system of the form $$\displaystyle{\dot{x}(t) = A(w(t))x(t)}$$ where \(w(t) \in \mathcal{W}\), with \(\mathcal{W}\) compact, and A(⋅ ) is continuous. In the case of a single stable linear system, stability is equivalent to the fact that the eigenvalues of A have negative real part (modulus less than one in the discrete-time case). The speed of convergence associated with the maximum real part (modulus) of the eigenvalues, precisely the maximum value of β > 0 such that ( 4.17) holds, is max{Re(λ), λ ∈ eig(A)}, where eig(A) is the set of the eigenvalues of A. In the case of an uncertain system, there is no analogous concept of eigenvalues. The eigenvalues of A(w), intended as functions of w, do not play a substantial role anymore, since they may all have negative real part bounded away from 0 (i.e. \(\max \{Re(\lambda ),\ \ \lambda \in eig(A(w))\} \leq \beta <0\)), and still the time-varying system be unstable. Indeed, the condition becomes necessary only.

[1]  S. Behtash,et al.  Design of controllers for linear parameter-varying systems by the gain scheduling technique , 1992 .

[2]  P. Khargonekar,et al.  Robust stabilization of uncertain linear systems: quadratic stabilizability and H/sup infinity / control theory , 1990 .

[3]  A. Bhaya,et al.  Equivalence of stability concepts for discrete time‐varying systems , 1994 .

[4]  Franco Blanchini The gain scheduling and the robust state feedback stabilization problems , 2000, IEEE Trans. Autom. Control..

[5]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[6]  L. Ghaoui,et al.  IMPROVED LMI CONDITIONS FOR GAIN SCHEDULING AND RELATED CONTROL PROBLEMS , 1998 .

[7]  G. Leitmann Guaranteed Asymptotic Stability for Some Linear Systems With Bounded Uncertainties , 1979 .

[8]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  Gary L. Wise,et al.  A note on a common misconception in estimation , 1985 .

[10]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[11]  Franco Blanchini,et al.  Stable LPV Realization of Parametric Transfer Functions and Its Application to Gain-Scheduling Control Design , 2010, IEEE Transactions on Automatic Control.

[12]  B. Anderson,et al.  Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .

[13]  Franco Blanchini,et al.  Stabilization of LPV Systems: State Feedback, State Estimation, and Duality , 2003, SIAM J. Control. Optim..

[14]  S. Gutman Uncertain dynamical systems--A Lyapunov min-max approach , 1979 .

[15]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[16]  Eduardo F. Camacho,et al.  A new vertex result for robustness problems with interval matrix uncertainty , 2007, 2007 European Control Conference (ECC).

[17]  J. Geromel,et al.  A new discrete-time robust stability condition , 1999 .

[18]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[19]  Anders Helmersson μ synthesis and LFT gain scheduling with real uncertainties , 1998 .

[20]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[21]  Yuandan Lin,et al.  A Smooth Converse Lyapunov Theorem for Robust Stability , 1996 .

[22]  A. Packard,et al.  Robust performance of linear parametrically varying systems using parametrically-dependent linear feedback , 1994 .

[23]  M. Corless,et al.  A new class of stabilizing controllers for uncertain dynamical systems , 1982, 1982 21st IEEE Conference on Decision and Control.

[24]  B. Ross Barmish,et al.  Robustness of Luenberger Observers: Linear Systems Stabilized via Nonlinear Control , 1984, 1984 American Control Conference.

[25]  Ian R. Petersen,et al.  A riccati equation approach to the stabilization of uncertain linear systems , 1986, Autom..

[26]  B. Barmish Necessary and sufficient conditions for quadratic stabilizability of an uncertain system , 1985 .

[27]  P. Gahinet,et al.  A convex characterization of gain-scheduled H∞ controllers , 1995, IEEE Trans. Autom. Control..

[28]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[29]  Tingshu Hu,et al.  Composite quadratic Lyapunov functions for constrained control systems , 2003, IEEE Trans. Autom. Control..

[30]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[31]  Hiromasa Haneda,et al.  Computer generated Lyapunov functions for a class of nonlinear systems , 1993 .

[32]  Brian D. O. Anderson,et al.  Lyapunov functions for uncertain systems with applications to the stability of time varying systems , 1994 .

[33]  Tingshu Hu,et al.  Nonlinear control design for linear differential inclusions via convex hull of quadratics , 2007, Autom..

[34]  H. Stalford Robust asymptotic stabilizability of Petersen's counterexample via a linear static controller , 1995, IEEE Trans. Autom. Control..

[35]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[36]  I. Petersen Quadratic stabilizability of uncertain linear systems: Existence of a nonlinear stabilizing control does not imply existence of a linear stabilizing control , 1985 .

[37]  Jamal Daafouz,et al.  Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties , 2001, Syst. Control. Lett..

[38]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[39]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[40]  Franco Blanchini,et al.  A new class of universal Lyapunov functions for the control of uncertain linear systems , 1999, IEEE Trans. Autom. Control..

[41]  E. Feron,et al.  Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions , 1996, IEEE Trans. Autom. Control..

[42]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[43]  Ian R. Petersen,et al.  Linear ultimate boundedness control of uncertain dynamical systems , 1983, Autom..

[44]  P. Peres,et al.  On a convex parameter space method for linear control design of uncertain systems , 1991 .

[45]  Wilson J. Rugh,et al.  Gain scheduling dynamic linear controllers for a nonlinear plant , 1995, Autom..

[46]  H. Stalford Scalar-quadratic stabilizability of the Petersen counterexample via a linear static controller , 1995 .

[47]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[48]  V. Vittal,et al.  Computer generated Lyapunov functions for interconnected systems: Improved results with applications to power systems , 1983, The 22nd IEEE Conference on Decision and Control.

[49]  F. Blanchini,et al.  On the transient estimate for linear systems with time-varying uncertain parameters , 1996 .

[50]  Alexandre Megretski,et al.  Robust state feedback control of LTV systems: Nonlinear is better than linear , 1997, 1997 European Control Conference (ECC).