First limits on the 21 cm power spectrum during the Epoch of X-ray heating
暂无分享,去创建一个
Max Tegmark | E. Lenc | D. Kaplan | J. Hewitt | B. Pindor | R. Webster | S. Tingay | M. Morales | C. Trott | E. Morgan | A. D. Oliveira-Costa | A. Loeb | D. Oberoi | P. Carroll | A. Rogers | B. Corey | R. Cappallo | A. Whitney | I. Sullivan | R. Wayth | P. Procopio | J. Kasper | A. Offringa | J. Pober | A. Beardsley | G. Bernardi | J. Bowman | J. Dillon | A. Ewall-Wice | B. Hazelton | D. Jacobs | A. Mesinger | A. Neben | N. Thyagarajan | J. Wyithe | R. Goeke | R. Subrahmanyan | M. Johnston-Hollitt | F. Briggs | B. Gaensler | D. Mitchell | L. Greenhill | S. Ord | C. Lonsdale | S. McWhirter | M. Lynch | M. Waterson | A. Williams | S. Sethi | D. Emrich | N. Hurley-Walker | N. Shankar | K. Srivani | B. McKinley | C. Wu | E. Kratzenberg | T. Prabu | A. Roshi | C. Williams | L. Feng | J. Riding | J. Line | N. Barry | Hs. Kim | S. Paul
[1] J. Hewitt,et al. Detecting the 21 cm forest in the 21 cm power spectrum , 2013, 1310.7936.
[2] Bradley Greig,et al. 21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal , 2015, 1501.06576.
[3] Andrew Hopkins,et al. Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.
[4] David R. DeBoer,et al. WHAT NEXT-GENERATION 21 cm POWER SPECTRUM MEASUREMENTS CAN TEACH US ABOUT THE EPOCH OF REIONIZATION , 2013, 1310.7031.
[5] S. J. Tingay,et al. Measuring phased‐array antenna beampatterns with high dynamic range for the Murchison Widefield Array using 137 MHz ORBCOMM satellites , 2015, 1505.07114.
[6] J. Hewitt,et al. Reionization and beyond: detecting the peaks of the cosmological 21 cm signal , 2013, 1310.0465.
[7] N. H. Heck,et al. The three‐hour‐range index measuring geomagnetic activity , 1939 .
[8] Clifford L. Rufenach,et al. Power‐law wavenumber spectrum deduced from ionospheric scintillation observations , 1972 .
[9] David F. Moore,et al. NEW 145 MHz SOURCE MEASUREMENTS BY PAPER IN THE SOUTHERN SKY , 2011, 1105.1367.
[10] J. F. H. lmboldt,et al. Very large array observations of disturbed ion flow from the plasmasphere to the nighttime ionosphere , 2012 .
[11] Cathryn M. Trott,et al. Epoch of reionization window. I. Mathematical formalism , 2014, 1404.2596.
[12] Max Tegmark,et al. Mapmaking for precision 21 cm cosmology , 2014, Physical Review D.
[13] The Murchison Widefield Array: solar science with the low frequency SKA Precursor , 2013, 1301.6414.
[14] O. Slee,et al. Radio sources observed with the Culgoora circular array , 1995 .
[15] Meng Su,et al. MITEoR: a scalable interferometer for precision 21 cm cosmology , 2014, 1405.5527.
[16] Cathryn M. Trott,et al. Real‐time imaging of density ducts between the plasmasphere and ionosphere , 2015, 1504.06470.
[17] A. Rogers,et al. SPECTRAL INDEX OF THE DIFFUSE RADIO BACKGROUND MEASURED FROM 100 TO 200 MHz , 2008, 0806.2868.
[18] M. Morales,et al. THE FUNDAMENTAL MULTI-BASELINE MODE-MIXING FOREGROUND IN 21 cm EPOCH OF REIONIZATION OBSERVATIONS , 2013, 1301.3126.
[19] Roger J. Cappallo,et al. Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.
[20] M. Wieringa. An investigation of the telescope based calibration methods ‘redundancy’ and ‘self-cal’ , 1992 .
[21] David R. DeBoer,et al. MULTIREDSHIFT LIMITS ON THE 21 cm POWER SPECTRUM FROM PAPER , 2014, 1408.3389.
[22] Edward J. Wollack,et al. Preprint typeset using L ATEX style emulateapj v. 10/09/06 ARCADE 2 MEASUREMENT OF THE EXTRA-GALACTIC SKY TEMPERATURE AT 3-90 GHZ , 2009 .
[23] W. V. Breugel,et al. Depolarization Silhouettes and the Filamentary Structure in the Radio Source Fornax A , 1989 .
[24] G. Swenson,et al. Interferometry and Synthesis in Radio Astronomy , 1986 .
[25] R. Ekers,et al. Bandpass calibration of a wideband spectrometer using pulse injection , 2015 .
[26] Abhirup Datta,et al. BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .
[27] David F. Moore,et al. PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.
[28] S. Furlanetto. The 21-cm forest , 2006 .
[29] A. R. Whitney,et al. Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array , 2015, 1506.01798.
[30] A. R. Whitney,et al. A 189 MHz, 2400 deg2 POLARIZATION SURVEY WITH THE MURCHISON WIDEFIELD ARRAY 32-ELEMENT PROTOTYPE , 2013, 1305.6047.
[31] C. Carilli,et al. H I 21 Centimeter Absorption beyond the Epoch of Reionization , 2002, astro-ph/0205169.
[32] T. Murphy,et al. wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.
[33] David F. Moore,et al. New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7 , 2013, 1304.4991.
[34] M. Morales,et al. Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA , 2016, 1603.00607.
[35] Alan E. E. Rogers,et al. Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.
[36] Max Tegmark,et al. A fast method for power spectrum and foreground analysis for 21 cm cosmology , 2013 .
[37] Miguel F. Morales,et al. Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .
[38] Z. Ali,et al. OPTIMIZED BEAM SCULPTING WITH GENERALIZED FRINGE-RATE FILTERS , 2015, 1503.05564.
[39] Maik Moeller,et al. Introduction to Electrodynamics , 2017 .
[40] Edward J. Wollack,et al. ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3–90 GHz , 2009, The Astrophysical Journal.
[41] 21-cm fluctuations from inhomogeneous X-ray heating before reionization , 2006, astro-ph/0607234.
[42] Steven Furlanetto,et al. Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .
[43] Mervyn J. Lynch,et al. THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.
[44] Matias Zaldarriaga,et al. Precision calibration of radio interferometers using redundant baselines , 2010, 1001.5268.
[45] J. Pritchard,et al. Descending from on high: Lyman-series cascades and spin-kinetic temperature coupling in the 21-cm line , 2005, astro-ph/0508381.
[46] W. Cotton. a New Method for Cross Polarized Delay Calibration of Radio Interferometers , 2012, 1205.3991.
[47] M. Morales,et al. Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.
[48] Cathryn M. Trott,et al. Spectral Calibration Requirements of Radio Interferometers for Epoch of Reionisation Science with the SKA , 2016, Publications of the Astronomical Society of Australia.
[49] A. R. Whitney,et al. Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations , 2015, Publications of the Astronomical Society of Australia.
[50] G. Rybicki,et al. Radiative processes in astrophysics , 1979 .
[51] M. I. Large,et al. The Molonglo Reference Catalogue of radio sources. , 1981 .
[52] D. G. Singleton,et al. Power spectra of ionospheric scintillations. , 1974 .
[53] S. Tingay,et al. THE EFFECT OF INTERPLANETARY SCINTILLATION ON EPOCH OF REIONIZATION POWER SPECTRA , 2015, 1510.02283.
[54] S. Zaroubi,et al. Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR , 2012, 1209.2615.
[55] Nipanjana Patra,et al. SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization , 2012, 1211.3800.
[56] Mark Waterson,et al. A digital-receiver for the MurchisonWidefield Array , 2015, 1502.05015.
[57] R. Cen,et al. 21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.
[58] U. Sydney,et al. Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization , 2010, 1011.2321.
[59] S. J. Tingay,et al. Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array , 2016, 1602.02247.
[60] Cathryn M. Trott,et al. Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.
[61] A. R. Whitney,et al. THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS , 2016, 1601.06177.
[62] David F. Moore,et al. A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.
[63] A. Mesinger,et al. The X-ray spectra of the first galaxies: 21 cm signatures , 2014, 1403.6125.
[64] A. Loeb,et al. The 21 Centimeter Forest: Radio Absorption Spectra as Probes of Minihalos before Reionization , 2002, astro-ph/0206308.
[65] David F. Moore,et al. NEW LIMITS ON 21 cm EPOCH OF REIONIZATION FROM PAPER-32 CONSISTENT WITH AN X-RAY HEATED INTERGALACTIC MEDIUM AT z = 7.7 , 2014 .
[66] Rachel L. Webster,et al. Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data , 2013, 1304.4229.
[67] M. Voit,et al. RADIATIVE PROCESSES , 2012 .
[68] Christopher Hirata,et al. A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.
[69] Daniel A. Mitchell,et al. CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR , 2016, 1601.02073.
[70] O. López-Cruz,et al. PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT , 2013, 1311.0014.
[71] J. Wyithe,et al. Detecting the redshifted 21cm forest during reionization , 2011, 1101.5431.
[72] Abraham Loeb,et al. In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .
[73] A. Loeb,et al. Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations , 2004, astro-ph/0410129.
[74] Max Tegmark,et al. FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA , 2015, 1502.07596.
[75] David R. DeBoer,et al. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM , 2015, 1503.00045.
[76] C. Carilli,et al. Limits on Polarized Leakage for the PAPER Epoch of Reionization Measurements at 126 and 164 MHz , 2017 .
[77] Namir E. Kassim,et al. Subarcminute resolution imaging of radio sources at 74 MHz with the very large array , 1993 .
[78] A. A. Deshpande,et al. Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data , 2015, 1506.01026.
[79] E. Greisen,et al. The 74 MHz System on the Very Large Array , 2007, 0704.3088.
[80] H. Trac,et al. Cosmic Reionization and the 21 cm Signal: Comparison between an Analytical Model and a Simulation , 2007, 0708.2424.
[81] W. A. Coles,et al. Interferometric Imaging with the 32 Element Murchison Wide-Field Array , 2010, 1010.1733.
[82] IoA,et al. Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts , 2001, astro-ph/0109241.
[83] S. Zaroubi,et al. Realistic simulations of the Galactic polarized foreground: consequences for 21‐cm reionization detection experiments , 2010, 1007.4135.
[84] N. Udaya Shankar,et al. IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.
[85] Cathryn M. Trott,et al. THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.
[86] J. Hewitt,et al. Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements , 2015, 1511.04101.
[87] J. Roerdink,et al. A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.
[88] Max Tegmark. How to Make Maps from Cosmic Microwave Background Data without Losing Information , 1996, astro-ph/9611130.
[89] D. Griffiths. Introduction to Electrodynamics , 2017 .
[90] A. R. Whitney,et al. The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.
[91] A. Rogers,et al. A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.
[92] N. Yoshida,et al. The nature of dark matter from the global high-redshift H i 21 cm signal , 2012, 1209.2120.
[93] Max Tegmark,et al. CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA , 2015, 1506.06150.
[94] Lu Feng,et al. The Murchison Widefield Array Correlator , 2015, Publications of the Astronomical Society of Australia.
[95] H. Falcke,et al. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets , 2009, 0902.0493.
[96] Max Tegmark. How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.
[97] A. H. Patil,et al. Polarization leakage in epoch of reionization windows – I. Low Frequency Array observations of the 3C196 field , 2015 .
[98] R. Sunyaev,et al. X-ray emission from star-forming galaxies – I. High-mass X-ray binaries , 2011, 1105.4610.
[99] Christopher L. Williams,et al. The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.
[100] M. J. Bentum,et al. Initial LOFAR observations of epoch of reionization windows: II. Diffuse polarized emission in the ELAIS-N1 field , 2014, 1407.2093.
[101] A. Loeb,et al. Measuring the X-ray Background in the Reionization Era with First Generation 21 cm Experiments , 2013, 1305.5541.
[102] A. Mesinger,et al. The imprint of warm dark matter on the cosmological 21-cm signal , 2013, 1310.0029.
[103] Robert A. Shaw,et al. Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .
[104] Y. Revaz,et al. Reionization by UV or X-ray sources , 2010, 1003.0834.
[105] Bryna Hazelton,et al. FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.
[106] A. Loeb,et al. Stellar black holes at the dawn of the universe , 2011, 1102.1891.
[107] Max Tegmark,et al. A method for 21 cm power spectrum estimation in the presence of foregrounds , 2011, Physical Review D.
[108] S. Velzen,et al. The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.
[109] L. Koopmans,et al. Scintillation noise in widefield radio interferometry , 2014, 1412.1420.
[110] G. Bernardi,et al. HI Epoch of Reionization Arrays , 2012, 1201.1700.
[111] S. Furlanetto. The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.
[112] Matias Zaldarriaga,et al. How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.
[113] David F. Moore,et al. A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS , 2013, 1307.7716.
[114] J. Titheridge. The electron content of the southern mid-latitude ionosphere, 1965-1971. , 1973 .
[115] X.Chen,et al. The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array , 2015, 1505.07568.
[116] Anthea J. Coster,et al. Automated GPS processing for global total electron content data , 2006 .
[117] J. Baldwin,et al. The 6C survey of radio sources – II. The zone $30^\circ \lt \delta \lt 51^\circ, 08^\text h30^\text m\lt\alpha\lt17^\text h30^\text m$ , 1988 .
[118] A. Mesinger,et al. Signatures of X-rays in the early Universe , 2012, 1210.7319.
[119] David F. Moore,et al. THE EFFECTS OF POLARIZED FOREGROUNDS ON 21 cm EPOCH OF REIONIZATION POWER SPECTRUM MEASUREMENTS , 2013, 1302.0876.
[120] E. Lenc,et al. GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.
[121] S. J. Tingay,et al. The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.
[122] L. Koopmans,et al. Scintillation noise power spectrum and its impact on high redshift 21-cm observations , 2015, 1512.00159.
[123] A. A. Deshpande,et al. FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY , 2012, 1209.1653.
[124] Va,et al. Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2008, 0901.0570.
[125] B. J. Flaherty,et al. Ionospheric electron content at temperate latitudes during the declining phase of the sunspot cycle , 1966 .
[126] S. Markoff,et al. LOFAR - low frequency array , 2006 .
[127] R. Ekers,et al. BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal , 2015, Publications of the Astronomical Society of Australia.
[128] Jason Manley,et al. OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.
[129] David R. DeBoer,et al. The HERA Dish II: Electromagnetic Simulations and Science Implications , 2016 .
[130] O. Garriott,et al. Response of the ionospheric electron content to fluctuations in solar activity , 1973 .
[131] Christopher L. Williams,et al. A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.
[132] A. Cohen,et al. PROBING FINE-SCALE IONOSPHERIC STRUCTURE WITH THE VERY LARGE ARRAY RADIO TELESCOPE , 2009, 0905.4501.