First limits on the 21 cm power spectrum during the Epoch of X-ray heating

This work was supported by NSF Grants AST-0457585, AST-0821321, AST-1105835, AST-1410719, AST-1410484, AST- 1411622, and AST-1440343, by the MIT School of Science, by the Marble Astrophysics Fund, and by generous donations from Jonathan Rothberg and an anonymous donor. AEW acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. AM acknowledges support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No 638809 – AIDA). Support for the MWA comes from the U.S. National Science Foundation (grants AST-0457585, PHY-0835713, CAREER- 0847753, and AST-0908884), the Australian Research Council (LIEF grants LE0775621 and LE0882938), the U.S. Air Force Of- fice of Scientific Research (grant FA9550-0510247), and the Centre for All-sky Astrophysics (an Australian Research Council Centre of Excellence funded by grant CE110001020). Support is also provided by the Smithsonian Astrophysical Observatory, the Raman Research Institute, the Australian National University, and the Victoria University of Wellington (via grant MED-E1799 from the New Zealand Ministry of Economic Development and an IBM Shared University Research Grant). The Australian Federal government provides additional support via the Commonwealth Scientific and Industrial Research Organisation (CSIRO), National Collaborative Research Infrastructure Strategy, Education Investment Fund, and the Australia India Strategic Research Fund, and Astronomy Australia Limited, under contract to Curtin University.

[1]  J. Hewitt,et al.  Detecting the 21 cm forest in the 21 cm power spectrum , 2013, 1310.7936.

[2]  Bradley Greig,et al.  21CMMC: an MCMC analysis tool enabling astrophysical parameter studies of the cosmic 21 cm signal , 2015, 1501.06576.

[3]  Andrew Hopkins,et al.  Compact continuum source finding for next generation radio surveys , 2012, 1202.4500.

[4]  David R. DeBoer,et al.  WHAT NEXT-GENERATION 21 cm POWER SPECTRUM MEASUREMENTS CAN TEACH US ABOUT THE EPOCH OF REIONIZATION , 2013, 1310.7031.

[5]  S. J. Tingay,et al.  Measuring phased‐array antenna beampatterns with high dynamic range for the Murchison Widefield Array using 137 MHz ORBCOMM satellites , 2015, 1505.07114.

[6]  J. Hewitt,et al.  Reionization and beyond: detecting the peaks of the cosmological 21 cm signal , 2013, 1310.0465.

[7]  N. H. Heck,et al.  The three‐hour‐range index measuring geomagnetic activity , 1939 .

[8]  Clifford L. Rufenach,et al.  Power‐law wavenumber spectrum deduced from ionospheric scintillation observations , 1972 .

[9]  David F. Moore,et al.  NEW 145 MHz SOURCE MEASUREMENTS BY PAPER IN THE SOUTHERN SKY , 2011, 1105.1367.

[10]  J. F. H. lmboldt,et al.  Very large array observations of disturbed ion flow from the plasmasphere to the nighttime ionosphere , 2012 .

[11]  Cathryn M. Trott,et al.  Epoch of reionization window. I. Mathematical formalism , 2014, 1404.2596.

[12]  Max Tegmark,et al.  Mapmaking for precision 21 cm cosmology , 2014, Physical Review D.

[13]  The Murchison Widefield Array: solar science with the low frequency SKA Precursor , 2013, 1301.6414.

[14]  O. Slee,et al.  Radio sources observed with the Culgoora circular array , 1995 .

[15]  Meng Su,et al.  MITEoR: a scalable interferometer for precision 21 cm cosmology , 2014, 1405.5527.

[16]  Cathryn M. Trott,et al.  Real‐time imaging of density ducts between the plasmasphere and ionosphere , 2015, 1504.06470.

[17]  A. Rogers,et al.  SPECTRAL INDEX OF THE DIFFUSE RADIO BACKGROUND MEASURED FROM 100 TO 200 MHz , 2008, 0806.2868.

[18]  M. Morales,et al.  THE FUNDAMENTAL MULTI-BASELINE MODE-MIXING FOREGROUND IN 21 cm EPOCH OF REIONIZATION OBSERVATIONS , 2013, 1301.3126.

[19]  Roger J. Cappallo,et al.  Real-Time Calibration of the Murchison Widefield Array , 2008, IEEE Journal of Selected Topics in Signal Processing.

[20]  M. Wieringa An investigation of the telescope based calibration methods ‘redundancy’ and ‘self-cal’ , 1992 .

[21]  David R. DeBoer,et al.  MULTIREDSHIFT LIMITS ON THE 21 cm POWER SPECTRUM FROM PAPER , 2014, 1408.3389.

[22]  Edward J. Wollack,et al.  Preprint typeset using L ATEX style emulateapj v. 10/09/06 ARCADE 2 MEASUREMENT OF THE EXTRA-GALACTIC SKY TEMPERATURE AT 3-90 GHZ , 2009 .

[23]  W. V. Breugel,et al.  Depolarization Silhouettes and the Filamentary Structure in the Radio Source Fornax A , 1989 .

[24]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[25]  R. Ekers,et al.  Bandpass calibration of a wideband spectrometer using pulse injection , 2015 .

[26]  Abhirup Datta,et al.  BRIGHT SOURCE SUBTRACTION REQUIREMENTS FOR REDSHIFTED 21 cm MEASUREMENTS , 2010 .

[27]  David F. Moore,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4 , 2015, 1502.06016.

[28]  S. Furlanetto The 21-cm forest , 2006 .

[29]  A. R. Whitney,et al.  Power spectrum analysis of ionospheric fluctuations with the Murchison Widefield Array , 2015, 1506.01798.

[30]  A. R. Whitney,et al.  A 189 MHz, 2400 deg2 POLARIZATION SURVEY WITH THE MURCHISON WIDEFIELD ARRAY 32-ELEMENT PROTOTYPE , 2013, 1305.6047.

[31]  C. Carilli,et al.  H I 21 Centimeter Absorption beyond the Epoch of Reionization , 2002, astro-ph/0205169.

[32]  T. Murphy,et al.  wsclean: an implementation of a fast, generic wide-field imager for radio astronomy , 2014, 1407.1943.

[33]  David F. Moore,et al.  New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray Heated IGM at z=7.7 , 2013, 1304.4991.

[34]  M. Morales,et al.  Calibration requirements for detecting the 21 cm epoch of reionization power spectrum and implications for the SKA , 2016, 1603.00607.

[35]  Alan E. E. Rogers,et al.  Science with the Murchison Widefield Array , 2012, Publications of the Astronomical Society of Australia.

[36]  Max Tegmark,et al.  A fast method for power spectrum and foreground analysis for 21 cm cosmology , 2013 .

[37]  Miguel F. Morales,et al.  Toward Epoch of Reionization Measurements with Wide-Field Radio Observations , 2003 .

[38]  Z. Ali,et al.  OPTIMIZED BEAM SCULPTING WITH GENERALIZED FRINGE-RATE FILTERS , 2015, 1503.05564.

[39]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[40]  Edward J. Wollack,et al.  ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3–90 GHz , 2009, The Astrophysical Journal.

[41]  21-cm fluctuations from inhomogeneous X-ray heating before reionization , 2006, astro-ph/0607234.

[42]  Steven Furlanetto,et al.  Cosmology at low frequencies: The 21 cm transition and the high-redshift Universe , 2006 .

[43]  Mervyn J. Lynch,et al.  THE PRECISION ARRAY FOR PROBING THE EPOCH OF RE-IONIZATION: EIGHT STATION RESULTS , 2009, 0904.2334.

[44]  Matias Zaldarriaga,et al.  Precision calibration of radio interferometers using redundant baselines , 2010, 1001.5268.

[45]  J. Pritchard,et al.  Descending from on high: Lyman-series cascades and spin-kinetic temperature coupling in the 21-cm line , 2005, astro-ph/0508381.

[46]  W. Cotton a New Method for Cross Polarized Delay Calibration of Radio Interferometers , 2012, 1205.3991.

[47]  M. Morales,et al.  Reionization and Cosmology with 21-cm Fluctuations , 2009, 0910.3010.

[48]  Cathryn M. Trott,et al.  Spectral Calibration Requirements of Radio Interferometers for Epoch of Reionisation Science with the SKA , 2016, Publications of the Astronomical Society of Australia.

[49]  A. R. Whitney,et al.  Ionospheric Modelling using GPS to Calibrate the MWA. I: Comparison of First Order Ionospheric Effects between GPS Models and MWA Observations , 2015, Publications of the Astronomical Society of Australia.

[50]  G. Rybicki,et al.  Radiative processes in astrophysics , 1979 .

[51]  M. I. Large,et al.  The Molonglo Reference Catalogue of radio sources. , 1981 .

[52]  D. G. Singleton,et al.  Power spectra of ionospheric scintillations. , 1974 .

[53]  S. Tingay,et al.  THE EFFECT OF INTERPLANETARY SCINTILLATION ON EPOCH OF REIONIZATION POWER SPECTRA , 2015, 1510.02283.

[54]  S. Zaroubi,et al.  Prospects for detecting the 21 cm forest from the diffuse intergalactic medium with LOFAR , 2012, 1209.2615.

[55]  Nipanjana Patra,et al.  SARAS: a precision system for measurement of the cosmic radio background and signatures from the epoch of reionization , 2012, 1211.3800.

[56]  Mark Waterson,et al.  A digital-receiver for the MurchisonWidefield Array , 2015, 1502.05015.

[57]  R. Cen,et al.  21cmfast: a fast, seminumerical simulation of the high‐redshift 21‐cm signal , 2010, 1003.3878.

[58]  U. Sydney,et al.  Polarized foreground removal at low radio frequencies using rotation measure synthesis: uncovering the signature of hydrogen reionization , 2010, 1011.2321.

[59]  S. J. Tingay,et al.  Parametrizing Epoch of Reionization foregrounds: a deep survey of low-frequency point-source spectra with the Murchison Widefield Array , 2016, 1602.02247.

[60]  Cathryn M. Trott,et al.  Epoch of reionization window. II. Statistical methods for foreground wedge reduction , 2014, 1404.4372.

[61]  A. R. Whitney,et al.  THE IMPORTANCE OF WIDE-FIELD FOREGROUND REMOVAL FOR 21 cm COSMOLOGY: A DEMONSTRATION WITH EARLY MWA EPOCH OF REIONIZATION OBSERVATIONS , 2016, 1601.06177.

[62]  David F. Moore,et al.  A PER-BASELINE, DELAY-SPECTRUM TECHNIQUE FOR ACCESSING THE 21 cm COSMIC REIONIZATION SIGNATURE , 2012, 1204.4749.

[63]  A. Mesinger,et al.  The X-ray spectra of the first galaxies: 21 cm signatures , 2014, 1403.6125.

[64]  A. Loeb,et al.  The 21 Centimeter Forest: Radio Absorption Spectra as Probes of Minihalos before Reionization , 2002, astro-ph/0206308.

[65]  David F. Moore,et al.  NEW LIMITS ON 21 cm EPOCH OF REIONIZATION FROM PAPER-32 CONSISTENT WITH AN X-RAY HEATED INTERGALACTIC MEDIUM AT z = 7.7 , 2014 .

[66]  Rachel L. Webster,et al.  Overcoming real-world obstacles in 21 cm power spectrum estimation: A method demonstration and results from early Murchison Widefield Array data , 2013, 1304.4229.

[67]  M. Voit,et al.  RADIATIVE PROCESSES , 2012 .

[68]  Christopher Hirata,et al.  A simulation-calibrated limit on the H i power spectrum from the GMRT Epoch of Reionization experiment , 2013, 1301.5906.

[69]  Daniel A. Mitchell,et al.  CHIPS: THE COSMOLOGICAL H i POWER SPECTRUM ESTIMATOR , 2016, 1601.02073.

[70]  O. López-Cruz,et al.  PROBING THE DARK AGES AT z ∼ 20: THE SCI-HI 21 cm ALL-SKY SPECTRUM EXPERIMENT , 2013, 1311.0014.

[71]  J. Wyithe,et al.  Detecting the redshifted 21cm forest during reionization , 2011, 1101.5431.

[72]  Abraham Loeb,et al.  In the Beginning: The First Sources of Light and the Reionization of the Universe , 2000 .

[73]  A. Loeb,et al.  Detecting the Earliest Galaxies through Two New Sources of 21 Centimeter Fluctuations , 2004, astro-ph/0410129.

[74]  Max Tegmark,et al.  FOREGROUNDS IN WIDE-FIELD REDSHIFTED 21 cm POWER SPECTRA , 2015, 1502.07596.

[75]  David R. DeBoer,et al.  PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM , 2015, 1503.00045.

[76]  C. Carilli,et al.  Limits on Polarized Leakage for the PAPER Epoch of Reionization Measurements at 126 and 164 MHz , 2017 .

[77]  Namir E. Kassim,et al.  Subarcminute resolution imaging of radio sources at 74 MHz with the very large array , 1993 .

[78]  A. A. Deshpande,et al.  Empirical covariance modeling for 21 cm power spectrum estimation: A method demonstration and new limits from early Murchison Widefield Array 128-tile data , 2015, 1506.01026.

[79]  E. Greisen,et al.  The 74 MHz System on the Very Large Array , 2007, 0704.3088.

[80]  H. Trac,et al.  Cosmic Reionization and the 21 cm Signal: Comparison between an Analytical Model and a Simulation , 2007, 0708.2424.

[81]  W. A. Coles,et al.  Interferometric Imaging with the 32 Element Murchison Wide-Field Array , 2010, 1010.1733.

[82]  IoA,et al.  Radio Foregrounds for the 21 Centimeter Tomography of the Neutral Intergalactic Medium at High Redshifts , 2001, astro-ph/0109241.

[83]  S. Zaroubi,et al.  Realistic simulations of the Galactic polarized foreground: consequences for 21‐cm reionization detection experiments , 2010, 1007.4135.

[84]  N. Udaya Shankar,et al.  IMAGING THE EPOCH OF REIONIZATION: LIMITATIONS FROM FOREGROUND CONFUSION AND IMAGING ALGORITHMS , 2011, 1106.1297.

[85]  Cathryn M. Trott,et al.  THE IMPACT OF POINT-SOURCE SUBTRACTION RESIDUALS ON 21 cm EPOCH OF REIONIZATION ESTIMATION , 2012, 1208.0646.

[86]  J. Hewitt,et al.  Constraining high-redshift X-ray sources with next generation 21-cm power spectrum measurements , 2015, 1511.04101.

[87]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[88]  Max Tegmark How to Make Maps from Cosmic Microwave Background Data without Losing Information , 1996, astro-ph/9611130.

[89]  D. Griffiths Introduction to Electrodynamics , 2017 .

[90]  A. R. Whitney,et al.  The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies , 2012, Publications of the Astronomical Society of Australia.

[91]  A. Rogers,et al.  A lower limit of Δz > 0.06 for the duration of the reionization epoch , 2010, Nature.

[92]  N. Yoshida,et al.  The nature of dark matter from the global high-redshift H i 21 cm signal , 2012, 1209.2120.

[93]  Max Tegmark,et al.  CONFIRMATION OF WIDE-FIELD SIGNATURES IN REDSHIFTED 21 cm POWER SPECTRA , 2015, 1506.06150.

[94]  Lu Feng,et al.  The Murchison Widefield Array Correlator , 2015, Publications of the Astronomical Society of Australia.

[95]  H. Falcke,et al.  Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets , 2009, 0902.0493.

[96]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[97]  A. H. Patil,et al.  Polarization leakage in epoch of reionization windows – I. Low Frequency Array observations of the 3C196 field , 2015 .

[98]  R. Sunyaev,et al.  X-ray emission from star-forming galaxies – I. High-mass X-ray binaries , 2011, 1105.4610.

[99]  Christopher L. Williams,et al.  The Murchison Widefield Array: Design Overview , 2009, Proceedings of the IEEE.

[100]  M. J. Bentum,et al.  Initial LOFAR observations of epoch of reionization windows: II. Diffuse polarized emission in the ELAIS-N1 field , 2014, 1407.2093.

[101]  A. Loeb,et al.  Measuring the X-ray Background in the Reionization Era with First Generation 21 cm Experiments , 2013, 1305.5541.

[102]  A. Mesinger,et al.  The imprint of warm dark matter on the cosmological 21-cm signal , 2013, 1310.0029.

[103]  Robert A. Shaw,et al.  Astronomical data analysis software and systems IV : meeting held at Baltimore, Maryland, 25-28 September 1994 , 1995 .

[104]  Y. Revaz,et al.  Reionization by UV or X-ray sources , 2010, 1003.0834.

[105]  Bryna Hazelton,et al.  FOUR FUNDAMENTAL FOREGROUND POWER SPECTRUM SHAPES FOR 21 cm COSMOLOGY OBSERVATIONS , 2012, 1202.3830.

[106]  A. Loeb,et al.  Stellar black holes at the dawn of the universe , 2011, 1102.1891.

[107]  Max Tegmark,et al.  A method for 21 cm power spectrum estimation in the presence of foregrounds , 2011, Physical Review D.

[108]  S. Velzen,et al.  The Very Large Array Low-frequency Sky Survey Redux (VLSSr) , 2014, 1404.0694.

[109]  L. Koopmans,et al.  Scintillation noise in widefield radio interferometry , 2014, 1412.1420.

[110]  G. Bernardi,et al.  HI Epoch of Reionization Arrays , 2012, 1201.1700.

[111]  S. Furlanetto The global 21-centimeter background from high redshifts , 2006, astro-ph/0604040.

[112]  Matias Zaldarriaga,et al.  How accurately can 21cm tomography constrain cosmology , 2008, 0802.1710.

[113]  David F. Moore,et al.  A FLUX SCALE FOR SOUTHERN HEMISPHERE 21 cm EPOCH OF REIONIZATION EXPERIMENTS , 2013, 1307.7716.

[114]  J. Titheridge The electron content of the southern mid-latitude ionosphere, 1965-1971. , 1973 .

[115]  X.Chen,et al.  The Cosmic Dawn and Epoch of Reionization with the Square Kilometre Array , 2015, 1505.07568.

[116]  Anthea J. Coster,et al.  Automated GPS processing for global total electron content data , 2006 .

[117]  J. Baldwin,et al.  The 6C survey of radio sources – II. The zone $30^\circ \lt \delta \lt 51^\circ, 08^\text h30^\text m\lt\alpha\lt17^\text h30^\text m$ , 1988 .

[118]  A. Mesinger,et al.  Signatures of X-rays in the early Universe , 2012, 1210.7319.

[119]  David F. Moore,et al.  THE EFFECTS OF POLARIZED FOREGROUNDS ON 21 cm EPOCH OF REIONIZATION POWER SPECTRUM MEASUREMENTS , 2013, 1302.0876.

[120]  E. Lenc,et al.  GLEAM: The GaLactic and Extragalactic All-Sky MWA Survey , 2015, Publications of the Astronomical Society of Australia.

[121]  S. J. Tingay,et al.  The Low-Frequency Environment of the Murchison Widefield Array: Radio-Frequency Interference Analysis and Mitigation , 2015, Publications of the Astronomical Society of Australia.

[122]  L. Koopmans,et al.  Scintillation noise power spectrum and its impact on high redshift 21-cm observations , 2015, 1512.00159.

[123]  A. A. Deshpande,et al.  FAST HOLOGRAPHIC DECONVOLUTION: A NEW TECHNIQUE FOR PRECISION RADIO INTERFEROMETRY , 2012, 1209.1653.

[124]  Va,et al.  Probing the first stars and black holes in the early Universe with the Dark Ages Radio Explorer (DARE) , 2008, 0901.0570.

[125]  B. J. Flaherty,et al.  Ionospheric electron content at temperate latitudes during the declining phase of the sunspot cycle , 1966 .

[126]  S. Markoff,et al.  LOFAR - low frequency array , 2006 .

[127]  R. Ekers,et al.  BIGHORNS - Broadband Instrument for Global HydrOgen ReioNisation Signal , 2015, Publications of the Astronomical Society of Australia.

[128]  Jason Manley,et al.  OPENING THE 21 cm EPOCH OF REIONIZATION WINDOW: MEASUREMENTS OF FOREGROUND ISOLATION WITH PAPER , 2013, 1301.7099.

[129]  David R. DeBoer,et al.  The HERA Dish II: Electromagnetic Simulations and Science Implications , 2016 .

[130]  O. Garriott,et al.  Response of the ionospheric electron content to fluctuations in solar activity , 1973 .

[131]  Christopher L. Williams,et al.  A STUDY OF FUNDAMENTAL LIMITATIONS TO STATISTICAL DETECTION OF REDSHIFTED H i FROM THE EPOCH OF REIONIZATION , 2013, 1308.0565.

[132]  A. Cohen,et al.  PROBING FINE-SCALE IONOSPHERIC STRUCTURE WITH THE VERY LARGE ARRAY RADIO TELESCOPE , 2009, 0905.4501.