Traversable Wormholes in the Extended Teleparallel Theory of Gravity with Matter Coupling

This study explores the Gaussian and the Lorentzian distributed spherically symmetric wormhole solutions in the f(τ,T) gravity. The basic idea of the Gaussian and Lorentzian noncommutative geometries emerges as the physically acceptable and substantial notion in quantum physics. This idea of the noncommutative geometries with both the Gaussian and Lorentzian distributions becomes more striking when wormhole geometries in the modified theories of gravity are discussed. Here we consider a linear model within f(τ,T) gravity to investigate traversable wormholes. In particular, we discuss the possible cases for the wormhole geometries using the Gaussian and the Lorentzian noncommutative distributions to obtain the exact shape function for them. By incorporating the particular values of the unknown parameters involved, we discuss different properties of the new wormhole geometries explored here. It is noted that the involved matter violates the weak energy condition for both the cases of the noncommutative geometries, whereas there is a possibility for a physically viable wormhole solution. By analyzing the equilibrium condition, it is found that the acquired solutions are stable. Furthermore, we provide the embedded diagrams for wormhole structures under Gaussian and Lorentzian noncommutative frameworks. Moreover, we present the critical analysis on an anisotropic pressure under the Gaussian and the Lorentzian distributions.

[1]  A. Övgün Weak deflection angle of black-bounce traversable wormholes usingGauss–Bonnet theorem in the dark matter medium , 2020, TURKISH JOURNAL OF PHYSICS.

[2]  T. Xia,et al.  Non-commutative wormholes exhibiting conformal motion in Rastall gravity , 2020, Chinese Journal of Physics.

[3]  T. Xia,et al.  Stable wormholes solutions in the background of Rastall theory , 2020 .

[4]  T. Xia,et al.  Wormhole solutions in F(T,TG) gravity under Gaussian and Lorentzian non-commutative distributions with conformal motions , 2019, Chinese Journal of Physics.

[5]  W. Javed,et al.  Effect of the Brane-Dicke coupling parameter on weak gravitational lensing by wormholes and naked singularities , 2019, Physical Review D.

[6]  A. Övgün Deflection Angle of Photons through Dark Matter by Black Holes and Wormholes Using Gauss–Bonnet Theorem , 2018, Universe.

[7]  K. Jusufi,et al.  Weak Gravitational lensing by phantom black holes and phantom wormholes using the Gauss–Bonnet theorem , 2018, Annals of Physics.

[8]  A. Övgün Light deflection by Damour-Solodukhin wormholes and Gauss-Bonnet theorem , 2018, Physical Review D.

[9]  H. Moradpour,et al.  Relativistic Bose-Einstein condensates thin-shell wormholes , 2017, 1710.05886.

[10]  A. Banerjee,et al.  Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory , 2017, 1707.01416.

[11]  S. Capozziello,et al.  Scalar-tensor teleparallel wormholes by Noether symmetries , 2016, 1608.03918.

[12]  S. Capozziello,et al.  Astrophysical flows near \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\,\,(T)$$\end{document}f(T) gravity black ho , 2016, The European Physical Journal C.

[13]  A. Övgün,et al.  Existence of traversable wormholes in the spherical stellar systems , 2015, Astrophysics and Space Science.

[14]  A. Övgün,et al.  Particle Acceleration by Static Black Holes in a Model of f(R) Gravity , 2015, 1507.00633.

[15]  A. Övgün,et al.  Tunnelling of vector particles from Lorentzian wormholes in 3+1 dimensions , 2015, 1505.02093.

[16]  A. Jawad,et al.  Lorentz distributed noncommutative wormhole solutions in extended teleparallel gravity , 2015, The European Physical Journal C.

[17]  E. Saridakis,et al.  Teleparallel equivalent of Gauss-Bonnet gravity and its modifications , 2014, 1404.2249.

[18]  S. Mazharimousavi,et al.  Thin-shell wormholes from the regular Hayward black hole , 2013, The European Physical Journal C.

[19]  G. Nashed Spherically symmetric charged-dS solution in $f(T)$ gravity theories , 2013, 1311.3131.

[20]  P. Kuhfittig Gravitational lensing of wormholes in the galactic halo region , 2013, 1311.2274.

[21]  K. Atazadeh,et al.  Vacuum spherically symmetric solutions in f(T) gravity , 2012, 1212.3764.

[22]  S. Capozziello,et al.  Exact charged black-hole solutions in D-dimensional f (T) gravity: torsion vs curvature analysis , 2012, 1210.1098.

[23]  P. Kanti,et al.  Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory , 2011, 1111.4049.

[24]  G. Nashed Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity , 2011, 1111.0003.

[25]  C. Boehmer,et al.  Wormhole geometries in modified teleparallel gravity and the energy conditions , 2011, 1110.5756.

[26]  P. Kanti,et al.  Wormholes in dilatonic Einstein-Gauss-Bonnet theory. , 2011, Physical review letters.

[27]  Miao Li,et al.  Violation of the first law of black hole thermodynamics in f(T) gravity , 2011, 1107.0515.

[28]  Miao Li,et al.  Degrees of freedom of f(T) gravity , 2011, 1105.5934.

[29]  P. Nicolini,et al.  Noncommutative geometry-inspired dirty black holes , 2009, 0902.4654.

[30]  F. Lobo,et al.  Self-sustained phantom wormholes in semi-classical gravity , 2007, gr-qc/0701020.

[31]  A. Gruppuso Newton's law in an effective non-commutative space?time , 2005, hep-th/0502144.

[32]  E. Spallucci,et al.  Feynman Path Integral on the Noncommutative Plane , 2003, hep-th/0307217.

[33]  Sung-Won Kim,et al.  Exact solutions of a charged wormhole , 2001, gr-qc/0102077.

[34]  S. Bergliaffa,et al.  Wormhole surgery and cosmology on the brane: The world is not enough , 2000, gr-qc/0001019.

[35]  Edward Teo Rotating traversable wormholes , 1998, gr-qc/9803098.

[36]  D. Hochberg,et al.  Geometric structure of the generic static traversable wormhole throat , 1997, gr-qc/9704082.

[37]  S. Sushkov,et al.  SELF-CONSISTENT WORMHOLE SOLUTIONS OF SEMICLASSICAL GRAVITY , 1997, gr-qc/9701064.

[38]  Kar,et al.  Lorentzian wormholes in Einstein-Gauss-Bonnet theory. , 1992, Physical review. D, Particles and fields.

[39]  Frolov Vacuum polarization in a locally static multiply connected spacetime and a time-machine problem. , 1991, Physical review. D, Particles and fields.

[40]  K. Thorne,et al.  Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity , 1988 .

[41]  Visser Quantum wormholes. , 1991, Physical review. D, Particles and fields.