Varieties of BL- algebras I: General properties.
暂无分享,去创建一个
[1] P. Mostert,et al. On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .
[2] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[3] Bruno Bosbach,et al. Komplementäre Halbgruppen. Axiomatik und Arithmetik , 1969 .
[4] T. Hecht,et al. Equational classes of relative Stone algebras , 1972, Notre Dame J. Formal Log..
[5] Yuichi Komori. Super-Ł ukasiewicz implicational logics , 1978 .
[6] Yuichi Komori. Super-Łukasiewicz propositional logics , 1981, Nagoya Mathematical Journal.
[7] A. Ursini,et al. Ideals in universal algebras , 1984 .
[8] D. Mundici. Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .
[9] W. Blok,et al. On the structure of varieties with equationally definable principal congruences IV , 1994 .
[10] A. Torrens,et al. Cyclic Elements in MV‐Algebras and Post Algebras , 1994 .
[11] A. Ursini. On subtractive varieties, I , 1994 .
[12] James G. Raftery,et al. Varieties of Commutative Residuated Integral Pomonoids and Their Residuation Subreducts , 1997 .
[13] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[14] Antoni Torrens Torrell,et al. Ultraproducts of Z with an Application to Many-Valued Logics☆ , 1999 .
[15] Giovanni Panti,et al. Varieties of MV-algebras , 1999, J. Appl. Non Class. Logics.
[16] Ada Lettieri,et al. Equational characterization of all varieties of MV-algebras , 1999 .
[17] Lluis Godo,et al. Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..
[18] W. Blok,et al. On the structure of hoops , 2000 .
[19] Joan Gispert. Universal Classes of MV-Chains with Applications to Many-valued Logics , 2002 .
[20] Giovanni Panti,et al. Geometrical methods in Wajsberg hoops , 2002 .
[21] Petr Hájek,et al. Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..