Varieties of BL- algebras I: General properties.

[1]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[2]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[3]  Bruno Bosbach,et al.  Komplementäre Halbgruppen. Axiomatik und Arithmetik , 1969 .

[4]  T. Hecht,et al.  Equational classes of relative Stone algebras , 1972, Notre Dame J. Formal Log..

[5]  Yuichi Komori Super-Ł ukasiewicz implicational logics , 1978 .

[6]  Yuichi Komori Super-Łukasiewicz propositional logics , 1981, Nagoya Mathematical Journal.

[7]  A. Ursini,et al.  Ideals in universal algebras , 1984 .

[8]  D. Mundici Interpretation of AF -algebras in ukasiewicz sentential calculus , 1986 .

[9]  W. Blok,et al.  On the structure of varieties with equationally definable principal congruences IV , 1994 .

[10]  A. Torrens,et al.  Cyclic Elements in MV‐Algebras and Post Algebras , 1994 .

[11]  A. Ursini On subtractive varieties, I , 1994 .

[12]  James G. Raftery,et al.  Varieties of Commutative Residuated Integral Pomonoids and Their Residuation Subreducts , 1997 .

[13]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[14]  Antoni Torrens Torrell,et al.  Ultraproducts of Z with an Application to Many-Valued Logics☆ , 1999 .

[15]  Giovanni Panti,et al.  Varieties of MV-algebras , 1999, J. Appl. Non Class. Logics.

[16]  Ada Lettieri,et al.  Equational characterization of all varieties of MV-algebras , 1999 .

[17]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[18]  W. Blok,et al.  On the structure of hoops , 2000 .

[19]  Joan Gispert Universal Classes of MV-Chains with Applications to Many-valued Logics , 2002 .

[20]  Giovanni Panti,et al.  Geometrical methods in Wajsberg hoops , 2002 .

[21]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..