Analysis of thermoelectric properties of AlInN semiconductor alloys

The thermoelectric properties of n-type wurtzite AlInN alloys are investigated by simulating the electron and phonon scatterings. The electrical conductivity, Seebeck coefficient and electronic thermal conductivity are obtained by considering all major electron scatterings. The lattice thermal conductivity is simulated by considering phonon scatterings. The simulation provides useful guideline in material optimization for thermoelectricity.

[1]  M. Dresselhaus,et al.  Recent developments in thermoelectric materials , 2003 .

[2]  Jing Zhang,et al.  Characterizations of Seebeck coefficients and thermoelectric figures of merit for AlInN alloys with various In-contents , 2011 .

[3]  Yik-Khoon Ee,et al.  Spontaneous Emission and Characteristics of Staggered InGaN Quantum-Well Light-Emitting Diodes , 2008, IEEE Journal of Quantum Electronics.

[4]  Jing Zhang,et al.  Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition , 2010 .

[5]  Ronald A. Arif,et al.  Optical Gain Analysis of Strain Compensated InGaN-AlGaN Quantum Well Active Regions for Lasers Emitting at 420-500 nm , 2007 .

[6]  Umesh K. Mishra,et al.  High quantum efficiency InGaN/GaN solar cells with 2.95 eV band gap , 2008 .

[7]  Hongping Zhao,et al.  Design Analysis of Staggered InGaN Quantum Wells Light-Emitting Diodes at 500–540 nm , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[8]  Yik-Khoon Ee,et al.  Self-Consistent Analysis of Strain-Compensated InGaN–AlGaN Quantum Wells for Lasers and Light-Emitting Diodes , 2009, IEEE Journal of Quantum Electronics.

[9]  Nelson Tansu,et al.  Influence of growth temperature and V/III ratio on the optical characteristics of narrow band gap (0.77 eV) InN grown on GaN/sapphire using pulsed MOVPE , 2008 .

[10]  Alexander A. Balandin,et al.  Thermal conduction in AlxGa1−xN alloys and thin films , 2005 .

[11]  Nelson Tansu,et al.  Analysis of InGaN-delta-InN quantum wells for light-emitting diodes , 2010 .

[12]  Ali Shakouri,et al.  Heat Transfer in Nanostructures for Solid-State Energy Conversion , 2002 .

[13]  Ronald A. Arif,et al.  Type-II InGaN-GaNAs quantum wells for lasers applications , 2008 .

[14]  Lester F. Eastman,et al.  Mobility of electrons in bulk GaN and Al x Ga 1-x N/GaN heterostructures , 2000 .

[15]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[16]  Ronald A. Arif,et al.  Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes , 2007 .

[17]  Rajendra Dahal,et al.  Thermoelectric properties of InxGa1−xN alloys , 2008 .

[18]  Yik-Khoon Ee,et al.  Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures. , 2009, Optics express.

[19]  Ronald A. Arif,et al.  Current injection efficiency induced efficiency-droop in InGaN quantum well light-emitting diodes , 2010, DRC 2010.

[20]  Nelson Tansu,et al.  MOVPE and photoluminescence of narrow band gap (0.77 eV) InN on GaN/sapphire by pulsed growth mode , 2008 .

[21]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[22]  David C. Look,et al.  Electrical Characterization of GaAs Materials and Devices , 1989 .

[23]  Yik-Khoon Ee,et al.  Abbreviated MOVPE nucleation of III-nitride light-emitting diodes on nano-patterned sapphire , 2010 .

[24]  Nelson Tansu,et al.  Analysis of thermoelectric characteristics of AlGaN and InGaN semiconductors , 2009, OPTO.

[25]  Yik-Khoon Ee,et al.  Enhancement of Light Extraction Efficiency of InGaN Quantum Wells LEDs Using SiO2 Microspheres , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[26]  Yik-Khoon Ee,et al.  Investigation of the deposition of microsphere monolayers for fabrication of microlens arrays. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[27]  Nelson Tansu,et al.  Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520–525 nm employing graded growth-temperature profile , 2009 .

[28]  J. Gilchrist,et al.  Optimization of Light Extraction Efficiency of III-Nitride LEDs With Self-Assembled Colloidal-Based Microlenses , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Yik-Khoon Ee,et al.  Metalorganic Vapor Phase Epitaxy of III-Nitride Light-Emitting Diodes on Nanopatterned AGOG Sapphire Substrate by Abbreviated Growth Mode , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Yik-Khoon Ee,et al.  III-Nitride Photonics , 2010, IEEE Photonics Journal.

[31]  Ronald A. Arif,et al.  MOVPE of InN films on GaN templates grown on sapphire and silicon(111) substrates , 2008 .

[32]  Ronald A. Arif,et al.  Design and characteristics of staggered InGaN quantum-well light-emitting diodes in the green spectral regime , 2009 .

[33]  Nelson Tansu,et al.  Optical gain characteristics of staggered InGaN quantum wells lasers , 2010 .

[34]  B. Ridley Quantum Processes in Semiconductors , 1982 .

[35]  U. Mishra,et al.  AlGaN/GaN HEMTs-an overview of device operation and applications , 2002, Proc. IEEE.

[36]  T. Paszkiewicz,et al.  Thermal conductivity of GaN crystals in 4.2-300 K range , 2003 .

[37]  Ronald A. Arif,et al.  Self-assembled InGaN quantum dots on GaN emitting at 520 nm grown by metalorganic vapor-phase epitaxy , 2008 .

[38]  David C. Look,et al.  Dislocation Scattering in GaN , 1999 .

[39]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[40]  Nelson Tansu,et al.  Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers , 2010 .

[41]  Rajendra Dahal,et al.  InGaN/GaN multiple quantum well solar cells with long operating wavelengths , 2009 .

[42]  Ronald A. Arif,et al.  Self-consistent gain analysis of type-II ‘W’ InGaN–GaNAs quantum well lasers , 2008 .

[43]  B. Nag,et al.  Electron transport in compound semiconductors , 1980 .