Drosophila's View on Insect Vision

[1]  Polarisation vision , 2011, Current Biology.

[2]  Corey G. Washington Color Vision in Drosophila melanogaster , 2010 .

[3]  Andreas S. Thum,et al.  The Neural Substrate of Spectral Preference in Drosophila , 2008, Neuron.

[4]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[5]  A. Borst,et al.  A genetically encoded calcium indicator for chronic in vivo two-photon imaging , 2008, Nature Methods.

[6]  Shin-ya Takemura,et al.  Synaptic circuits of the Drosophila optic lobe: The input terminals to the medulla , 2008, The Journal of comparative neurology.

[7]  Alexander Y Katsov,et al.  Motion Processing Streams in Drosophila Are Behaviorally Specialized , 2008, Neuron.

[8]  Alexander Borst,et al.  Fluorescence Changes of Genetic Calcium Indicators and OGB-1 Correlated with Neural Activity and Calcium In Vivo and In Vitro , 2008, The Journal of Neuroscience.

[9]  Fritz-Olaf Lehmann,et al.  The free-flight response of Drosophila to motion of the visual environment , 2008, Journal of Experimental Biology.

[10]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[11]  Alexander Borst,et al.  Nonlinear Integration of Binocular Optic Flow by DNOVS2, A Descending Neuron of the Fly , 2008, The Journal of Neuroscience.

[12]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[13]  A. Borst,et al.  Response Properties of Motion-Sensitive Visual Interneurons in the Lobula Plate of Drosophila melanogaster , 2008, Current Biology.

[14]  N. Strausfeld,et al.  Dissection of the Peripheral Motion Channel in the Visual System of Drosophila melanogaster , 2007, Neuron.

[15]  R. Nusse,et al.  Creating transgenic Drosophila by microinjecting the site-specific φC31 integrase mRNA and a transgene-containing donor plasmid , 2007, Nature Protocols.

[16]  Jan Wessnitzer,et al.  Evolving a Neural Model of Insect Path Integration , 2007, Adapt. Behav..

[17]  Idan Segev,et al.  Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons , 2007, Proceedings of the National Academy of Sciences.

[18]  Alexander Borst,et al.  Synaptic organization of lobula plate tangential cells in Drosophila: γ‐Aminobutyric acid receptors and chemical release sites , 2007, The Journal of comparative neurology.

[19]  C. Montell,et al.  Phototransduction and retinal degeneration in Drosophila , 2007, Pflügers Archiv - European Journal of Physiology.

[20]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[21]  Alexander Borst,et al.  Integration of Lobula Plate Output Signals by DNOVS1, an Identified Premotor Descending Neuron , 2007, The Journal of Neuroscience.

[22]  Stanley Heinze,et al.  Maplike Representation of Celestial E-Vector Orientations in the Brain of an Insect , 2007, Science.

[23]  K. Deisseroth,et al.  Circuit-breakers: optical technologies for probing neural signals and systems , 2007, Nature Reviews Neuroscience.

[24]  A. Borst,et al.  Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron , 2006, Nature Neuroscience.

[25]  Karin Nordström,et al.  Small object detection neurons in female hoverflies , 2006, Proceedings of the Royal Society B: Biological Sciences.

[26]  J. V. van Hateren,et al.  Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons. , 2006, Journal of neurophysiology.

[27]  Almut Kelber,et al.  Invertebrate colour vision , 2006 .

[28]  H. Sompolinsky,et al.  Adaptation without parameter change: Dynamic gain control in motion detection , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Borst,et al.  Sharing Receptive Fields with Your Neighbors: Tuning the Vertical System Cells to Wide Field Motion , 2005, The Journal of Neuroscience.

[30]  Susana Q. Lima,et al.  Remote Control of Behavior through Genetically Targeted Photostimulation of Neurons , 2005, Cell.

[31]  E. C. Sobel Depth perception by motion parallax and paradoxical parallax in the locust , 2005, Naturwissenschaften.

[32]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[33]  E. Isacoff,et al.  Light-activated ion channels for remote control of neuronal firing , 2004, Nature Neuroscience.

[34]  A Borst,et al.  Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[35]  M. Suster,et al.  Refining GAL4‐driven transgene expression in Drosophila with a GAL80 enhancer‐trap , 2004, Genesis.

[36]  A. Borst,et al.  Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons , 2004, Nature Neuroscience.

[37]  Gilles Laurent,et al.  Transformation of Olfactory Representations in the Drosophila Antennal Lobe , 2004, Science.

[38]  Alexander Borst,et al.  The Intrinsic Electrophysiological Characteristics of Fly Lobula Plate Tangential Cells: III. Visual Response Properties , 1999, Journal of Computational Neuroscience.

[39]  Alexander Borst,et al.  The intrinsic electrophysiological characteristics of fly lobula plate tangential cells: I. Passive membrane properties , 1996, Journal of Computational Neuroscience.

[40]  N. Strausfeld,et al.  The functional organization of male-specific visual neurons in flies , 1991, Journal of Comparative Physiology A.

[41]  K. Fischbach,et al.  Plasticity of the landing response of Drosophila melanogaster , 1991, Journal of Comparative Physiology A.

[42]  Cole Gilbert,et al.  Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata , 1991, Journal of Comparative Physiology A.

[43]  Thomas Labhart,et al.  A behavioural study of polarization vision in the fly, Musca domestica , 1990, Journal of Comparative Physiology A.

[44]  The effect of mean luminance on the size selectivity of identified target interneurons in the dragonfly , 1990, Journal of Comparative Physiology A.

[45]  K. Fischbach,et al.  The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure , 1989, Cell and Tissue Research.

[46]  A. Borst,et al.  Spatio-temporal integration of motion , 1988, The Science of Nature.

[47]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[48]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.

[49]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985, Biological Cybernetics.

[50]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 1984, Journal of Comparative Physiology A.

[51]  R. Menzel,et al.  Antagonistic color effects in spatial vision of honeybees , 1983, Journal of comparative physiology.

[52]  Martin Heisenberg,et al.  The three-dimensional optomotor torque system ofDrosophila melanogaster , 1982, Journal of comparative physiology.

[53]  Tomaso Poggio,et al.  Tracking and chasing in houseflies (Musca) , 1982, Biological Cybernetics.

[54]  R. Hengstenberg,et al.  The number and structure of giant vertical cells (VS) in the lobula plate of the blowflyCalliphora erythrocephala , 1982, Journal of comparative physiology.

[55]  Reinhard Wolf,et al.  Polarization sensitivity of course control inDrosophila melanogaster , 1980, Journal of comparative physiology.

[56]  Robert D. DeVoe,et al.  Movement sensitivities of cells in the fly's medulla , 1980, Journal of comparative physiology.

[57]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[58]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[59]  Matti Järvilehto,et al.  Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina , 1971, Zeitschrift für vergleichende Physiologie.

[60]  Karl Georg Götz,et al.  Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila , 1965, Kybernetik.

[61]  H. Autrum Die Belichtungspotentiale und das Sehen der Insekten (Untersuchungen an Calliphora und Dixippus) , 1950, Zeitschrift für vergleichende Physiologie.

[62]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[63]  R. Menzel,et al.  The spectral input systems of hymenopteran insects and their receptor-based colour vision , 2004, Journal of Comparative Physiology A.

[64]  H. Straka,et al.  Temporal resolving power of blowfly visual system: effects of decamethonium and hyperpolarization on responses of laminar monopolar neurons , 2004, Journal of Comparative Physiology A.

[65]  Isabelle Bülthoff,et al.  Deoxyglucose mapping of nervous activity induced inDrosophila brain by visual movement , 2004, Journal of Comparative Physiology A.

[66]  D. Menne,et al.  Colour vision inDrosophila melanogaster , 2004, Journal of comparative physiology.

[67]  R. Menzel,et al.  Chromatic properties of interneurons in the optic lobes of the bee , 2004, Journal of comparative physiology.

[68]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[69]  Werner Reichardt,et al.  Figure-ground discrimination by relative movement in the visual system of the fly , 2004, Biological Cybernetics.

[70]  Alexander Borst,et al.  Neural image processing by dendritic networks , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[71]  R. Wehner Desert ant navigation: how miniature brains solve complex tasks , 2003, Journal of Comparative Physiology A.

[72]  Peter Nordström,et al.  Twilight orientation to polarised light in the crepuscular dung beetle Scarabaeus zambesianus , 2003, Journal of Experimental Biology.

[73]  A. Borst,et al.  Adaptation of response transients in fly motion vision. II: Model studies , 2003, Vision Research.

[74]  A. Borst,et al.  Adaptation of response transients in fly motion vision. I: Experiments , 2003, Vision Research.

[75]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[76]  M. Dickinson,et al.  A comparison of visual and haltere-mediated equilibrium reflexes in the fruit fly Drosophila melanogaster , 2003, Journal of Experimental Biology.

[77]  Liqun Luo,et al.  Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila , 2002, The Journal of comparative neurology.

[78]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[79]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[80]  A. Borst,et al.  Dendro-Dendritic Interactions between Motion-Sensitive Large-Field Neurons in the Fly , 2002, The Journal of Neuroscience.

[81]  Alexander Borst,et al.  Different mechanisms of calcium entry within different dendritic compartments. , 2002, Journal of neurophysiology.

[82]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[83]  C. Desplan,et al.  Photoreceptor subtype specification: from flies to humans. , 2001, Seminars in cell & developmental biology.

[84]  Roger C. Hardie,et al.  Visual transduction in Drosophila , 2001, Nature.

[85]  T. Kitamoto,et al.  Drosophila cholinergic neurons and processes visualized with Gal4/UAS-GFP. , 2001, Brain research. Gene expression patterns.

[86]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[87]  J. Nunemacher,et al.  Optimal management of giant cell arteritis and polymyalgia rheumatica , 2012, Therapeutics and clinical risk management.

[88]  R. Olberg,et al.  Prey pursuit and interception in dragonflies , 2000, Journal of Comparative Physiology A.

[89]  A Borst,et al.  Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. , 2000, Journal of neurophysiology.

[90]  Hateren,et al.  Blowfly flight and optic flow. II. Head movements during flight , 1999, The Journal of experimental biology.

[91]  R. Mains,et al.  Inducible Genetic Suppression of Neuronal Excitability , 1999, The Journal of Neuroscience.

[92]  A. Borst,et al.  Active Membrane Properties and Signal Encoding in Graded Potential Neurons , 1998, The Journal of Neuroscience.

[93]  R Hengstenberg,et al.  Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. , 1998, Journal of neurophysiology.

[94]  J. Zeil,et al.  Active vision in insects: an analysis of object-directed zig-zag flights in wasps (Odynerus spinipes , Eumenidae) , 1998, Journal of Comparative Physiology A.

[95]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[96]  C. Gilbert Visual control of cursorial prey pursuit by tiger beetles (Cicindelidae) , 1997, Journal of Comparative Physiology A.

[97]  F C Rind,et al.  Signaling of object approach by the DCMD neuron of the locust. , 1997, Journal of neurophysiology.

[98]  N. Strausfeld,et al.  The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems. , 1997, The Journal of comparative neurology.

[99]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Parallel Direction- and Non-Direction-Sensitive Pathways between the Medulla and Lobula Plate , 1996, The Journal of Neuroscience.

[100]  N. Strausfeld,et al.  Visual Motion-Detection Circuits in Flies: Small-Field Retinotopic Elements Responding to Motion Are Evolutionarily Conserved across Taxa , 1996, The Journal of Neuroscience.

[101]  J. Abrams,et al.  grim, a novel cell death gene in Drosophila. , 1996, Genes & development.

[102]  G. Laurent,et al.  Elementary Computation of Object Approach by a Wide-Field Visual Neuron , 1995, Science.

[103]  N. Strausfeld,et al.  Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[104]  H. Steller,et al.  The head involution defective gene of Drosophila melanogaster functions in programmed cell death. , 1995, Genes & development.

[105]  M Egelhaaf,et al.  Calcium accumulation in visual interneurons of the fly: stimulus dependence and relationship to membrane potential. , 1995, Journal of neurophysiology.

[106]  R. Morse The Dance Language and Orientation of Bees , 1994 .

[107]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[108]  A. Borst,et al.  Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques. , 1993, Journal of neurophysiology.

[109]  J. Gould,et al.  Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. , 1992, Development.

[110]  R. DeVoe The Physiology of the Compound Eyes of Insects and Crustaceans , 1992 .

[111]  Roger C. Hardie,et al.  Whole-cell recordings of the light induced current in dissociated Drosophila photoreceptors: evidence for feedback by calcium permeating the light-sensitive channels , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[112]  N. Strausfeld,et al.  Neuronal basis for parallel visual processing in the fly , 1991, Visual Neuroscience.

[113]  I. Meinertzhagen,et al.  Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster , 1991, The Journal of comparative neurology.

[114]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[115]  T. Fukushi Colour discrimination from various shades of grey in the trained blowfly, Lucilia cuprina , 1990 .

[116]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[117]  R. Hardie,et al.  A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse , 1989, Nature.

[118]  K. Vogt Distribution of Insect Visual Chromophores: Functional and Phylogenetic Aspects , 1989 .

[119]  A. Borst,et al.  Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[120]  R. Hardie,et al.  Facets of Vision , 1989, Springer Berlin Heidelberg.

[121]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[122]  H. Wagner Flight Performance and Visual Control of Flight of the Free-Flying Housefly (Musca Domestica L.) I. Organization of the Flight Motor , 1986 .

[123]  Rüdiger Wehner,et al.  Polarization vision in bees , 1986, Nature.

[124]  Samuel Rossel,et al.  Binocular Spatial Localization in the Praying Mantis , 1986 .

[125]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[126]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[127]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[128]  G. Rubin,et al.  Genetic transformation of Drosophila with transposable element vectors. , 1982, Science.

[129]  M Heisenberg,et al.  Structural brain mutant of Drosophila melanogaster with reduced cell number in the medulla cortex and with normal optomotor yaw response. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[130]  Jay M. Enoch,et al.  Vertebrate photoreceptor optics , 1981 .

[131]  R. Wyman,et al.  Motor outputs of giant nerve fiber in Drosophila. , 1980, Journal of neurophysiology.

[132]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[133]  S. Buchner,et al.  Preliminary Investigations on a Pair of Giant Fibers in the Central Nervous System of Dipteran Flies , 1973 .

[134]  S. Swihart The neural basis of colour vision in the butterfly, Heliconius erato , 1972 .

[135]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[136]  M. Wiener,et al.  Animal eyes. , 1957, The American orthoptic journal.

[137]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[138]  H. Kalmus,et al.  Optomotor responses in Drosophila and Musca. , 1949, Physiologia comparata et oecologia; an international journal of comparative physiology and ecology.

[139]  George Wald,et al.  THE VISUAL ACUITY AND INTENSITY DISCRIMINATION OF DROSOPHILA , 1934, The Journal of general physiology.

[140]  Santiago Ramón y Cajal,et al.  Contribución al conocimiento de los centros nerviosos de los insectos , 1915 .

[141]  K. Frisch Der Farbensinn und Formensinn der Biene , 1914 .

[142]  S. Exner,et al.  Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen , 1894 .

[143]  S. Exner Die Physiologie der facettirten Augen von Krebsen und Insecten , 1891 .

[144]  Invertebrate photoreceptor optics , .