Learning Temporal Quantum Tomography

Quantifying and verifying the control level in preparing a quantum state are central challenges in building quantum devices. The quantum state is characterized from experimental measurements, using a procedure known as tomography, which requires a vast number of resources. However, tomography for a quantum device with temporal processing, which is fundamentally different from standard tomography, has not been formulated. We develop a practical and approximate tomography method using a recurrent machine learning framework for this intriguing situation. The method is based on repeated quantum interactions between a system called quantum reservoir with a stream of quantum states. Measurement data from the reservoir are connected to a linear readout to train a recurrent relation between quantum channels applied to the input stream. We demonstrate our algorithms for representative quantum learning tasks, followed by the proposal of a quantum memory capacity to evaluate the temporal processing ability of near-term quantum devices.

[1]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[2]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[3]  M. Chang,et al.  Entanglement and tunable spin-spin couplings between trapped ions using multiple transverse modes. , 2009, Physical review letters.

[4]  Ny,et al.  Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits , 2009, 0910.1118.

[5]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[6]  I. Nechita,et al.  Random repeated quantum interactions and random invariant states , 2009, Probability Theory and Related Fields.

[7]  H. Nurdin,et al.  Temporal Information Processing on Noisy Quantum Computers , 2020, Physical Review Applied.

[8]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[9]  Miguel C. Soriano,et al.  Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing , 2021, Communications Physics.

[10]  Kohei Nakajima,et al.  Higher-Order Quantum Reservoir Computing , 2020, ArXiv.

[11]  M. Weides,et al.  Correlating Decoherence in Transmon Qubits: Low Frequency Noise by Single Fluctuators. , 2019, Physical review letters.

[12]  R. Werner,et al.  Quantum channels with memory , 2005, quant-ph/0502106.

[13]  Jiayin Chen,et al.  Learning nonlinear input–output maps with dissipative quantum systems , 2019, Quantum Information Processing.

[14]  J. Lasserre A trace inequality for matrix product , 1995, IEEE Trans. Autom. Control..

[15]  P. Alam ‘G’ , 2021, Composites Engineering: An A–Z Guide.

[16]  V. Giovannetti,et al.  Quantum channels and memory effects , 2012, 1207.5435.

[17]  M. Devoret,et al.  Cavity Attenuators for Superconducting Qubits , 2018, Physical Review Applied.

[18]  An ergodic theorem for homogeneously distributed quantum channels with applications to matrix product states , 2019, 1909.11769.

[19]  Stanislav Fort,et al.  Adaptive quantum state tomography with neural networks , 2018, npj Quantum Information.

[20]  Andrzej Opala,et al.  Quantum reservoir processing , 2018, npj Quantum Information.

[21]  Kohei Nakajima,et al.  Unifying framework for information processing in stochastically driven dynamical systems , 2021, Physical Review Research.

[22]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.

[23]  Isaac L. Chuang,et al.  Quantum Computation and Quantum Information (10th Anniversary edition) , 2011 .

[24]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[25]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[26]  Konrad Banaszek,et al.  Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise. , 2004, Physical review letters.

[27]  M. C. Soriano,et al.  Dynamical Phase Transitions in Quantum Reservoir Computing. , 2021, Physical review letters.

[28]  Leon O. Chua,et al.  Fading memory and the problem of approximating nonlinear operators with volterra series , 1985 .

[29]  Herbert Jaeger,et al.  The''echo state''approach to analysing and training recurrent neural networks , 2001 .

[30]  Ortwin Hess,et al.  Spatio-temporal dynamics and fluctuations in quantum dot lasers: mesoscopic theory and modeling , 2002, SPIE OPTO.

[31]  Konrad Banaszek,et al.  Exploiting entanglement in communication channels with correlated noise (9 pages) , 2003, quant-ph/0309148.

[32]  Philip Walther,et al.  Experimental verification of an indefinite causal order , 2016, Science Advances.

[33]  L. C. G. Govia,et al.  Bootstrapping quantum process tomography via a perturbative ansatz , 2019, Nature Communications.

[34]  C. Monroe,et al.  Observation of a many-body dynamical phase transition with a 53-qubit quantum simulator , 2017, Nature.

[35]  Christoph Simon,et al.  Towards a global quantum network , 2017, Nature Photonics.

[36]  Kohei Nakajima,et al.  Quantum Neuromorphic Computing with Reservoir Computing Networks , 2021, Advanced Quantum Technologies.

[37]  Benjamin Schrauwen,et al.  Information Processing Capacity of Dynamical Systems , 2012, Scientific Reports.

[38]  Guang-Can Guo,et al.  Experimental Transmission of Quantum Information Using a Superposition of Causal Orders. , 2018, Physical review letters.

[39]  Yang Liu,et al.  Experimental Quantum Switching for Exponentially Superior Quantum Communication Complexity. , 2018, Physical review letters.

[40]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[41]  Tomasz Paterek,et al.  Quantum Neuromorphic Platform for Quantum State Preparation. , 2019, Physical review letters.

[42]  Non-local propagation of correlations in long-range interacting quantum systems , 2014, 1401.5088.

[43]  R. Kueng,et al.  Predicting many properties of a quantum system from very few measurements , 2020, Nature Physics.

[44]  Ramis Movassagh,et al.  Theory of Ergodic Quantum Processes , 2021, Physical Review X.

[45]  J. Michael Steele Kingman's subadditive ergodic theorem , 1989 .

[46]  Herbert Jaeger,et al.  Reservoir computing approaches to recurrent neural network training , 2009, Comput. Sci. Rev..

[47]  Philip Walther,et al.  Experimental superposition of orders of quantum gates , 2014, Nature Communications.

[48]  S. Wehner,et al.  Quantum internet: A vision for the road ahead , 2018, Science.

[49]  B. Lanyon,et al.  Quasiparticle engineering and entanglement propagation in a quantum many-body system , 2014, Nature.

[50]  Kohei Nakajima,et al.  Optimal short-term memory before the edge of chaos in driven random recurrent networks , 2019, Physical review. E.

[51]  J. Garcia-Frías,et al.  Time-varying quantum channel models for superconducting qubits , 2021, npj Quantum Information.

[52]  H. Walther,et al.  Preparing pure photon number states of the radiation field , 2000, Nature.

[53]  L. C. G. Govia,et al.  Quantum reservoir computing with a single nonlinear oscillator , 2020, Physical Review Research.

[54]  B. Valiron,et al.  Quantum computations without definite causal structure , 2009, 0912.0195.

[55]  G. Chiribella Perfect discrimination of no-signalling channels via quantum superposition of causal structures , 2011, 1109.5154.

[56]  C. Branciard,et al.  Indefinite Causal Order in a Quantum Switch. , 2018, Physical review letters.

[57]  M. Weides,et al.  Coherent superconducting qubits from a subtractive junction fabrication process , 2020, 2006.16862.

[58]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[59]  Amir F. Atiya,et al.  New results on recurrent network training: unifying the algorithms and accelerating convergence , 2000, IEEE Trans. Neural Networks Learn. Syst..

[60]  Sina Salek,et al.  Enhanced Communication with the Assistance of Indefinite Causal Order. , 2017, Physical review letters.

[61]  L. Abbott,et al.  Beyond the edge of chaos: amplification and temporal integration by recurrent networks in the chaotic regime. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[62]  Keisuke Fujii,et al.  Boosting Computational Power through Spatial Multiplexing in Quantum Reservoir Computing , 2018, Physical Review Applied.

[63]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[64]  Maria L. Rizzo,et al.  Measuring and testing dependence by correlation of distances , 2007, 0803.4101.

[65]  Alain Joye,et al.  Infinite Products of Random Matrices and Repeated Interaction Dynamics , 2007 .

[66]  B. I. Bantysh,et al.  Quantum tomography benchmarking , 2020, Quantum Information Processing.

[67]  Keisuke Fujii,et al.  Quantum Reservoir Computing: A Reservoir Approach Toward Quantum Machine Learning on Near-Term Quantum Devices , 2020, Reservoir Computing.

[68]  P. Delsing,et al.  Decoherence benchmarking of superconducting qubits , 2019, npj Quantum Information.

[69]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[70]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[71]  T. Monz,et al.  Process tomography of ion trap quantum gates. , 2006, Physical review letters.

[72]  Ian A. Walmsley,et al.  Temporal modes in quantum optics: then and now , 2019 .

[73]  H. Hennion,et al.  Limit theorems for products of positive random matrices , 1997 .

[74]  Kohei Nakajima,et al.  Physical reservoir computing—an introductory perspective , 2020, Japanese Journal of Applied Physics.

[75]  B. Brecht,et al.  Photon temporal modes: a complete framework for quantum information science , 2015, 1504.06251.

[76]  Designing a NISQ reservoir with maximal memory capacity for volatility forecasting , 2020, 2004.08240.

[77]  Nils Bertschinger,et al.  Real-Time Computation at the Edge of Chaos in Recurrent Neural Networks , 2004, Neural Computation.

[78]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[79]  Miguel C. Soriano,et al.  Opportunities in Quantum Reservoir Computing and Extreme Learning Machines , 2021, Advanced Quantum Technologies.

[80]  Meschede,et al.  One-atom maser. , 1985, Physical review letters.

[81]  J. P. Garrahan,et al.  Towards a Theory of Metastability in Open Quantum Dynamics. , 2015, Physical review letters.

[82]  Keisuke Fujii,et al.  Toward NMR Quantum Reservoir Computing , 2021, Reservoir Computing.

[83]  H. Neven,et al.  Fluctuations of Energy-Relaxation Times in Superconducting Qubits. , 2018, Physical review letters.

[84]  R. Kosut,et al.  Efficient measurement of quantum dynamics via compressive sensing. , 2009, Physical review letters.

[85]  Andrzej Opala,et al.  Reconstructing Quantum States With Quantum Reservoir Networks , 2020, IEEE Transactions on Neural Networks and Learning Systems.