High Dimensional Finite Elements for Multiscale Wave Equations

For locally periodic multiscale wave equations in $\mathbb{R}^d$ that depend on a macroscopic scale and n microscopic separated scales, we solve the high dimensional limiting multiscale homogenized problem that is posed in $(n+1)d$ dimensions and is obtained by multiscale convergence. We consider the full and sparse tensor product finite element methods, and analyze both the spatial semidiscrete and the fully (both temporal and spatial) discrete approximating problems. With sufficient regularity, the sparse tensor product approximation achieves a convergence rate essentially equal to that for the full tensor product approximation, but requires only an essentially equal number of degrees of freedom as for solving an equation in $\mathbb{R}^d$ for the same level of accuracy. For the initial condition $u(0,x)=0$, we construct a numerical corrector from the finite element solution. In the case of two scales, we derive an explicit homogenization error which, together with the finite element error, produces an ...

[1]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[2]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[3]  Olof Runborg,et al.  Multi-scale methods for wave propagation in heterogeneous media , 2009, 0911.2638.

[4]  Christoph Schwab,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF STOCHASTIC, PARAMETRIC ELLIPTIC MULTISCALE PDEs , 2013 .

[5]  E Weinan,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[6]  Viet Ha Hoang Sparse Finite Element Method for Periodic Multiscale Nonlinear Monotone Problems , 2008, Multiscale Model. Simul..

[7]  Fadil Santosa,et al.  A dispersive effective medium for wave propagation in periodic composites , 1991 .

[8]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[9]  C. Schwab,et al.  Sparse tensor finite elements for elliptic multiple scale problems , 2011 .

[10]  Michael Griebel,et al.  Tensor product type subspace splittings and multilevel iterative methods for anisotropic problems , 1995, Adv. Comput. Math..

[11]  Yalchin Efendiev,et al.  Analysis of global multiscale finite element methods for wave equations with continuum spatial scales , 2010 .

[12]  Marcus J. Grote,et al.  Finite Element Heterogeneous Multiscale Method for the Wave Equation , 2011, Multiscale Model. Simul..

[13]  G. Nguetseng A general convergence result for a functional related to the theory of homogenization , 1989 .

[14]  Christoph Schwab,et al.  High-Dimensional Finite Elements for Elliptic Problems with Multiple Scales , 2005, Multiscale Modeling & simulation.

[15]  Grégoire Allaire,et al.  Multiscale convergence and reiterated homogenisation , 1996, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[16]  V. Zhikov,et al.  Homogenization of Differential Operators and Integral Functionals , 1994 .

[17]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[18]  T. Dupont $L^2 $-Estimates for Galerkin Methods for Second Order Hyperbolic Equations , 1973 .

[19]  Houman Owhadi,et al.  Numerical homogenization of the acoustic wave equations with a continuum of scales , 2006 .

[20]  G. Allaire Homogenization and two-scale convergence , 1992 .

[21]  Doina Cioranescu,et al.  The Periodic Unfolding Method in Homogenization , 2008, SIAM J. Math. Anal..

[22]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[23]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[24]  Gilles A. Francfort,et al.  Correctors for the homogenization of the wave and heat equations , 1992 .