Human retina trades single-photon detection for high-fidelity contrast encoding

We lack a fundamental understanding of how the spike output of the retina enables human visual perception. Here we show that human vision at its ultimate sensitivity limit depends on the spike output of ON but not OFF parasol (magnocellular) ganglion cells. Surprisingly, nonlinear signal processing in the retinal ON pathway precludes perceptual detection of single photons in darkness, but enables quantal-resolution discrimination of differences in light intensity.

[1]  Johan Westö,et al.  Retinal OFF ganglion cells allow detection of quantal shadows at starlight , 2021, Current Biology.

[2]  Lina Smeds,et al.  Paradoxical Rules of Spike Train Decoding Revealed at the Sensitivity Limit of Vision , 2019, Neuron.

[3]  R. Prevedel,et al.  Direct detection of a single photon by humans , 2016, Nature Communications.

[4]  P. Nelson Old and new results about single-photon sensitivity in human vision , 2016, Physical biology.

[5]  F. Rieke,et al.  Coincidence Detection of Single-Photon Responses in the Inner Retina at the Sensitivity Limit of Vision , 2014, Current Biology.

[6]  A. Watson A formula for human retinal ganglion cell receptive field density as a function of visual field location. , 2014, Journal of vision.

[7]  Matteo Carandini,et al.  Thalamic filtering of retinal spike trains by postsynaptic summation. , 2007, Journal of vision.

[8]  Peter Sterling,et al.  Contrast threshold of a brisk-transient ganglion cell in vitro. , 2003, Journal of neurophysiology.

[9]  F. Rieke,et al.  Nonlinear Signal Transfer from Mouse Rods to Bipolar Cells and Implications for Visual Sensitivity , 2002, Neuron.

[10]  Paul R. Martin,et al.  Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus , 1996, The Journal of comparative neurology.

[11]  C. Curcio,et al.  Aging of the human photoreceptor mosaic: evidence for selective vulnerability of rods in central retina. , 1993, Investigative ophthalmology & visual science.

[12]  A. Hendrickson,et al.  The development of parafoveal and mid-peripheral human retina , 1992, Behavioural Brain Research.

[13]  A. Hendrickson,et al.  Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina) , 1989, The Journal of comparative neurology.

[14]  D. Baylor,et al.  The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. , 1984, The Journal of physiology.

[15]  H. Leibowitz,et al.  New evidence for the intermediate position of relaxed accommodation , 1978, Documenta Ophthalmologica.

[16]  B. Sakitt Counting every quantum , 1972, The Journal of physiology.

[17]  H. V. Velden Over het aantal lichtquanta dat nodig is voor een lichtprikkel bij het menselijk oog , 1944 .

[18]  H. Vries The quantum character of light and its bearing upon threshold of vision, the differential sensitivity and visual acuity of the eye , 1943 .

[19]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[20]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the primate retina , 2004 .

[21]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[22]  T. Cornsweet,et al.  Luminance discrimination of brief flashes under various conditions of adaptation , 1965, The Journal of physiology.