Low-dose bivalent mRNA vaccine is highly effective against different SARS-CoV-2 variants in a transgenic mouse model

Combining optimized spike (S) protein-encoding mRNA vaccines to target multiple SARS-CoV-2 variants could improve COVID-19 control. We compared monovalent and bivalent mRNA vaccines encoding B.1.351 (Beta) and/or B.1.617.2 (Delta) SARS-CoV-2 S-protein, primarily in a transgenic mouse model and a Wistar rat model. The low-dose bivalent mRNA vaccine contained half the mRNA of each respective monovalent vaccine, but induced comparable neutralizing antibody titres, enrichment of lung-resident memory CD8+ T cells, specific CD4+ and CD8+ responses, and fully protected transgenic mice from SARS-CoV-2 lethality. The bivalent mRNA vaccine significantly reduced viral replication in both Beta- and Delta-challenged mice. Sera from bivalent mRNA vaccine immunized Wistar rats also contained neutralizing antibodies against the B.1.1.529 (Omicron BA.1) variant. These data suggest that low-dose and fit-for-purpose multivalent mRNA vaccines encoding distinct S-proteins is a feasible approach for increasing the potency of vaccines against emerging and co-circulating SARS-CoV-2 variants.

[1]  Madeleine K. D. Scott,et al.  Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine , 2022, Nature Immunology.

[2]  L. Knabl,et al.  Neutralization profile of Omicron variant convalescent individuals , 2022, medRxiv.

[3]  D. Montefiori,et al.  Homologous and Heterologous Covid-19 Booster Vaccinations , 2022, The New England journal of medicine.

[4]  S. Mallal,et al.  SARS-CoV-2 vaccination induces immunological T cell memory able to cross-recognize variants from Alpha to Omicron , 2022, Cell.

[5]  S. Madhi,et al.  SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses , 2022, Cell.

[6]  E. Saphire,et al.  mRNA-1273 vaccine-induced antibodies maintain Fc effector functions across SARS-CoV-2 variants of concern , 2022, Immunity.

[7]  A. Walls,et al.  Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement , 2021, bioRxiv.

[8]  S. Mallal,et al.  SARS-CoV-2 vaccination induces immunological memory able to cross-recognize variants from Alpha to Omicron , 2021 .

[9]  P. Maes,et al.  Considerable escape of SARS-CoV-2 Omicron to antibody neutralization , 2021, Nature.

[10]  J. Bhiman,et al.  Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa , 2021, medRxiv.

[11]  P. Schommers,et al.  mRNA booster immunization elicits potent neutralizing serum activity against the SARS-CoV-2 Omicron variant , 2021, Nature Medicine.

[12]  S. Hoehl,et al.  Reduced Neutralization of SARS-CoV-2 Omicron Variant by Vaccine Sera and monoclonal antibodies , 2021, medRxiv.

[13]  F. Derosa,et al.  Development of multivalent mRNA vaccine candidates for seasonal or pandemic influenza , 2021, NPJ vaccines.

[14]  A. Monto The Future of SARS-CoV-2 Vaccination - Lessons from Influenza. , 2021, The New England journal of medicine.

[15]  Larissa B. Thackray,et al.  Protective activity of mRNA vaccines against ancestral and variant SARS-CoV-2 strains , 2021, bioRxiv.

[16]  M. Beer,et al.  CVnCoV and CV2CoV protect human ACE2 transgenic mice from ancestral B BavPat1 and emerging B.1.351 SARS-CoV-2 , 2021, Nature Communications.

[17]  M. Diamond,et al.  SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses , 2021, Nature.

[18]  A. Iwasaki,et al.  Adaptive immune determinants of viral clearance and protection in mouse models of SARS-CoV-2 , 2021, bioRxiv.

[19]  M. Davenport,et al.  Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection , 2021, Nature Medicine.

[20]  B. Pulendran,et al.  Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines , 2021, bioRxiv.

[21]  A. Godzik,et al.  Detection of a SARS-CoV-2 variant of concern in South Africa , 2021, Nature.

[22]  D. Lauffenburger,et al.  Correlates of Protection Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[23]  M. Cazzola,et al.  ACE2: The Major Cell Entry Receptor for SARS-CoV-2 , 2020, Lung.

[24]  Daiki Matsuda,et al.  A single dose of self-transcribing and replicating RNA-based SARS-CoV-2 vaccine produces protective adaptive immunity in mice , 2020, bioRxiv.

[25]  Shamus P. Keeler,et al.  Publisher Correction: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function , 2020, Nature Immunology.

[26]  M. Beer,et al.  Multi‐species ELISA for the detection of antibodies against SARS‐CoV‐2 in animals , 2020, bioRxiv.

[27]  I. Amit,et al.  Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 , 2020, Nature Medicine.

[28]  Kimberly J. Hassett,et al.  Multi-antigenic human cytomegalovirus mRNA vaccines that elicit potent humoral and cell-mediated immunity. , 2018, Vaccine.