Switching Light Transmittance by Responsive Organometallic Poly(ionic liquid)s: Control by Cross Talk of Thermal and Redox Stimuli

A novel organometallic poly(ionic liquid) with both redox- and thermoresponsive properties is synthesized from a poly(ferrocenylsilane) (PFS) via a one-step Strecker sulfite alkylation reaction by using tetraalkylphosphonium sulfite as an effective and versatile nucleophile. This dual-responsive polymer is composed of a PFS backbone and quaternary phosphonium sulfonate side groups and exhibits a concentration-dependent lower critical solution temperature (LCST)-type phase transition in aqueous solution. Furthermore, the LCST-type phase behavior of the polymer can be switched between the “off” state and “on” state by chemical or electrochemical oxidation and reduction on the ferrocene units in the polymer main chain. As a consequence, a classical LCST-type phase transition, as well as an “isothermal” redox-triggered phase transition can be induced by using thermal and electrochemical triggers without changing the composition of the system. On the basis of this dual responsiveness, a “smart window” device is fabricated. The optical characteristics of this device are completely unaltered after 100 thermal and/or redox cycles.

[1]  George R. Whittell,et al.  Metallopolymers: New Multifunctional Materials , 2007 .

[2]  Jenq-Neng Hwang,et al.  Multicolored Electrochromism in Polymers: Structures and Devices , 2004 .

[3]  C. Barner‐Kowollik,et al.  Individually addressable thermo- and redox-responsive block copolymers by combining anionic polymerization and RAFT protocols. , 2014, Macromolecular rapid communications.

[4]  B. Sumerlin,et al.  New directions in thermoresponsive polymers. , 2013, Chemical Society reviews.

[5]  Johannes C. Brendel,et al.  Poly(bromoethyl acrylate): A Reactive Precursor for the Synthesis of Functional RAFT Materials , 2016 .

[6]  Johannes C. Brendel,et al.  Controlled Synthesis of Water-Soluble Conjugated Polyelectrolytes Leading to Excellent Hole Transport Mobility , 2014 .

[7]  K. Landfester,et al.  A triblock terpolymer vs. blends of diblock copolymers for nanocapsules addressed by three independent stimuli , 2016 .

[8]  M. Antonietti,et al.  Poly(tetrabutylphosphonium 4-styrenesulfonate): a poly(ionic liquid) stabilizer for graphene being multi-responsive , 2012 .

[9]  Jiayin Yuan,et al.  Thermoresponsive polyelectrolytes derived from ionic liquids , 2015 .

[10]  M. Rehahn,et al.  Polyferrocenylsilan-basierte Polymersysteme , 2007 .

[11]  Martin D Hager,et al.  Functional soft materials from metallopolymers and metallosupramolecular polymers. , 2011, Nature materials.

[12]  W. Shi,et al.  Single-Chain Elasticity of Poly(ferrocenyldimethylsilane) and Poly(ferrocenylmethylphenylsilane) , 2004 .

[13]  C. McCormick,et al.  Synthesis and solution properties of zwitterionic polymers. , 2002, Chemical reviews.

[14]  X. Sui,et al.  Electrografting of stimuli-responsive, redox active organometallic polymers to gold from ionic liquids. , 2014, Journal of the American Chemical Society.

[15]  Guangzhao Zhang,et al.  Forward‐Osmosis Desalination with Poly(Ionic Liquid) Hydrogels as Smart Draw Agents , 2016, Advanced materials.

[16]  I. Manners,et al.  Polyferrocenylsilanes: synthesis, properties, and applications. , 2016, Chemical Society reviews.

[17]  G. Vancso,et al.  Redox-responsive organometallic hydrogels for in situ metal nanoparticle synthesis. , 2015, Chemical communications.

[18]  R. Hikmet,et al.  Electrically switchable mirrors and optical components made from liquid-crystal gels , 1998, Nature.

[19]  D. J. Phillips,et al.  Towards being genuinely smart: ‘isothermally-responsive’ polymers as versatile, programmable scaffolds for biologically-adaptable materials , 2015 .

[20]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[21]  Carl M. Lampert,et al.  Durability of electrochromic switching devices for glazings , 1990, Other Conferences.

[22]  Jiayin Yuan,et al.  Thermoresponsive polymerized gemini dicationic ionic liquid , 2014 .

[23]  A. Strecker Ueber das Lecithin , 1868 .

[24]  I. Manners,et al.  Synthesis and Characterization of Water-Soluble Cationic and Anionic Polyferrocenylsilane Polyelectrolytes , 2002 .

[25]  Yang Wang,et al.  Switchable Materials for Smart Windows. , 2016, Annual review of chemical and biomolecular engineering.

[26]  R. Noble,et al.  A thermoresponsive poly(ionic liquid) membrane enables concentration of proteins from aqueous media. , 2016, Chemical communications.

[27]  M. Urban,et al.  Recent advances and challenges in designing stimuli-responsive polymers , 2010 .

[28]  B. Liedberg,et al.  Highly Swellable, Dual-Responsive Hydrogels Based on PNIPAM and Redox Active Poly(ferrocenylsilane) Poly(ionic liquid)s: Synthesis, Structure, and Properties. , 2016, Macromolecular rapid communications.

[29]  Jiayin Yuan,et al.  Cationic Poly(ionic liquid) with Tunable Lower Critical Solution Temperature-Type Phase Transition. , 2013, ACS macro letters.

[30]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[31]  M. Antonietti,et al.  Nanoporous ionic organic networks: from synthesis to materials applications. , 2016, Chemical Society reviews.

[32]  X. Sui,et al.  Redox-active cross-linkable poly(ionic liquid)s. , 2012, Journal of the American Chemical Society.

[33]  D. J. Phillips,et al.  "Isothermal" LCST transitions triggered by bioreduction of single polymer end-groups. , 2013, Chemical communications.

[34]  J. Larabee,et al.  Phase behaviour and solution properties of sulphobetaine polymers , 1986 .

[35]  M. C. Stuart,et al.  Emerging applications of stimuli-responsive polymer materials. , 2010, Nature materials.

[36]  X. Sui,et al.  Breathing pores on command: redox-responsive spongy membranes from poly(ferrocenylsilane)s. , 2014, Angewandte Chemie.

[37]  R. Hoogenboom,et al.  Redox-controlled upper critical solution temperature behaviour of a nitroxide containing polymer in alcohol–water mixtures , 2016 .

[38]  M. Rehahn,et al.  Polyferrocenylsilane-based polymer systems. , 2007, Angewandte Chemie.

[39]  C. V. van Blitterswijk,et al.  Poly(N-isopropylacrylamide)–poly(ferrocenylsilane) dual-responsive hydrogels: synthesis, characterization and antimicrobial applications , 2013 .

[40]  N. Kuramoto,et al.  Property of thermo-sensitive and redox-active poly(N-cyclopropylacrylamide-co-vinylferrocene) and poly(N-isopropylacrylamide-co-vinylferrocene) , 1998 .

[41]  C. Hawker,et al.  Dual-gated supramolecular star polymers in aqueous solution , 2017 .

[42]  G. Vancso,et al.  Stimulus Responsive Poly(ferrocenylsilanes): Redox Chemistry of Iron in the Main Chain , 2005 .

[43]  A. van den Berg,et al.  Redox-responsive organometallic microgel particles prepared from poly(ferrocenylsilane)s generated using microfluidics. , 2014, Chemical communications.

[44]  Carl M. Lampert Progress in switching windows , 2001, SPIE Optics + Photonics.