Structural analysis of the SDSS Cosmic Web – I. Non-linear density field reconstructions

This study is the first in a series in which we analyse the structure and topology of the Cosmic Web as traced by the Sloan Digital Sky Survey (SDSS). The main issue addressed in the present study is the translation of the irregularly distributed discrete spatial data in the galaxy redshift survey into a representative density field. The density field will form the basis for a statistical, topological and cosmographic study of the cosmic density field in our Local Universe. We investigate the ability of three reconstruction techniques to analyse and investigate web-like features and geometries in a discrete distribution of objects. The three methods are the linear Delaunay Tessellation Field Estimator (DTFE), its higher order equivalent Natural Neighbour Field Estimator (NNFE) and a version of the Kriging interpolation adapted to the specific circumstances encountered in galaxy redshift surveys, the Natural Lognormal Kriging technique. DTFE and NNFE are based on the local geometry defined by the Voronoi and Delaunay tessellations of the galaxy distribution. The three reconstruction methods are analysed and compared using mock magnitude- and volume-limited SDSS redshift surveys, obtained on the basis of the Millennium simulation. We investigate error trends, biases and the topological structure of the resulting fields, concentrating on the void population identified by the Watershed Void Finder. Environmental effects are addressed by evaluating the density fields on a range of Gaussian filter scales. Comparison with the void population in the original simulation yields the fraction of false void mergers and false void splits. In most tests DTFE, NNFE and Kriging have largely similar density and topology error behaviour. Cosmetically, higher order NNFE and Kriging methods produce more visually appealing reconstructions. Quantitatively, however, DTFE performs better, even while being computationally far less demanding. A successful recovery of the void population on small scales appears to be difficult, while the void recovery rate improves significantly on scales >3 h-1 Mpc. A study of small-scale voids and the void galaxy population should therefore be restricted to the local Universe, out to at most 100 h-1 Mpc.

[1]  G. Matheron Principles of geostatistics , 1963 .

[2]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series , 1964 .

[3]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[4]  A. Dressler Galaxy morphology in rich clusters: Implications for the formation and evolution of galaxies , 1980 .

[5]  S. Shectman,et al.  A million cubic megaparsec void in Bootes , 1981 .

[6]  P. Macdonald,et al.  Interpreting Multivariate Data , 1982 .

[7]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[8]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[9]  N. Bahcall,et al.  An approximately 300 Mpc void of rich clusters of galaxies , 1982 .

[10]  R. Giovanelli,et al.  Morphological segregation in the Pisces-Perseus supercluster , 1985 .

[11]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[12]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[13]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[14]  J. Gott,et al.  The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .

[15]  E. Bertschinger Path integral methods for primordial density perturbations - sampling of constrained Gaussian random fields , 1987 .

[16]  N. Cressie Spatial prediction and ordinary kriging , 1988 .

[17]  D. Weinberg,et al.  The topology of large-scale structure. III: Analysis of observations , 1989 .

[18]  N. Cressie The origins of kriging , 1990 .

[19]  E. Ribak,et al.  Constrained realizations of Gaussian fields : a simple algorithm , 1991 .

[20]  G. Kauffmann,et al.  Voids in the distribution of galaxies: an assessment of their significance and derivation of a void spectrum. , 1991 .

[21]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[22]  B. Jones,et al.  A lognormal model for the cosmological mass distribution. , 1991 .

[23]  John C. Davis,et al.  Contouring: A Guide to the Analysis and Display of Spatial Data , 1992 .

[24]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[25]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[26]  Changbom Park,et al.  The topology of large-scale structure. VI: Slices of the universe , 1992 .

[27]  W. Press,et al.  Interpolation, realization, and reconstruction of noisy, irregularly sampled data , 1992 .

[28]  G. Hinshaw,et al.  Structure in the COBE differential microwave radiometer first-year maps , 1992 .

[29]  Ebeling,et al.  Detecting structure in two dimensions combining Voronoi tessellation and percolation. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  Evolution of one-point distributions from Gaussian initial fluctuations , 1993, astro-ph/9311028.

[31]  Noel A Cressie,et al.  Statistics for Spatial Data, Revised Edition. , 1994 .

[32]  Jean Braun,et al.  A numerical method for solving partial differential equations on highly irregular evolving grids , 1995, Nature.

[33]  R. Sheth Constrained realizations and minimum variance reconstruction of non-Gaussian random fields , 1995, astro-ph/9511096.

[34]  O. Lahav,et al.  Wiener Reconstruction of The Large Scale Structure , 1994, astro-ph/9410080.

[35]  F. Bernardeau,et al.  A new method for accurate estimation of velocity field statistics , 1996 .

[36]  R. Weygaert,et al.  Peak and gravity constraints in Gaussian primordial density fields: An application of the Hoffman-Ribak method , 1995, astro-ph/9507024.

[37]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[38]  T. Piran,et al.  Voids in the Large-Scale Structure , 1997, astro-ph/9702135.

[39]  T. Belytschko,et al.  THE NATURAL ELEMENT METHOD IN SOLID MECHANICS , 1998 .

[40]  B. Sathyaprakash,et al.  Shapefinders: A New Shape Diagnostic for Large-Scale Structure , 1998, astro-ph/9801053.

[41]  C. Caldwell Mathematics of Computation , 1999 .

[42]  Y. Mellier Probing the Universe with Weak Lensing , 1998, astro-ph/9812172.

[43]  B. Sathyaprakash,et al.  Disentangling the Cosmic Web. I. Morphology of Isodensity Contours , 1999, astro-ph/9904384.

[44]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[45]  F. Hoyle,et al.  Two-dimensional Topology of the Two-Degree Field Galaxy Redshift Survey , 2001, astro-ph/0111546.

[46]  Maximum likelihood estimates of the two- and three-dimensional power spectra of the APM Galaxy Survey , 2000, astro-ph/0010478.

[47]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the power spectrum and the matter content of the Universe , 2001, astro-ph/0105252.

[48]  Y. Suto,et al.  Probability Distribution Function of Cosmological Density Fluctuations from a Gaussian Initial Condition: Comparison of One-Point and Two-Point Lognormal Model Predictions with N-Body Simulations , 2001, astro-ph/0105218.

[49]  M. Lombardi Interpolation and smoothing. , 2002, astro-ph/0208533.

[50]  John E. Davis,et al.  Sloan Digital Sky Survey: Early Data Release , 2002 .

[51]  S. Arbabi-Bidgoli,et al.  Void scaling and void profiles in cold dark matter models , 2001, astro-ph/0111581.

[52]  S. Zaroubi Unbiased reconstruction of the large-scale structure , 2000, astro-ph/0010561.

[53]  Vladimir Katkovnik,et al.  Kernel density estimation with adaptive varying window size , 2002, Pattern Recognit. Lett..

[54]  Isaac Amidror,et al.  Scattered data interpolation methods for electronic imaging systems: a survey , 2002, J. Electronic Imaging.

[55]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.

[56]  S. Sain Multivariate locally adaptive density estimation , 2002 .

[57]  M. Plionis,et al.  The size and shape of local voids , 2002 .

[58]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[59]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[60]  Erik G. Miller A new class of entropy estimators for multi-dimensional densities , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[61]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: Wiener reconstruction of the cosmic web , 2003, astro-ph/0312546.

[62]  H. C. F. Astrophysics,et al.  Numerical estimation of densities , 2004, astro-ph/0409233.

[63]  Voids in a ΛCDM universe , 2004, astro-ph/0409162.

[64]  Morphology of the supercluster–void network in ΛCDM cosmology , 2003, astro-ph/0312110.

[65]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[66]  F. Prada,et al.  Statistics of voids in the two‐degree Field Galaxy Redshift Survey , 2005, astro-ph/0506668.

[67]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[68]  U. California,et al.  Shapes and sizes of voids in the Lambda cold dark matter universe: excursion set approach , 2005, astro-ph/0509858.

[69]  Y. Wadadekar,et al.  MoMaF: the Mock Map Facility , 2003, astro-ph/0309305.

[70]  M. Skrutskie,et al.  The 2MASS Redshift Survey and Low Galactic Latitude Large-Scale Structure , 2005 .

[71]  D. Donoho,et al.  Morphology of the galaxy distribution from wavelet denoising , 2005, astro-ph/0508326.

[72]  A. Fairall,et al.  Nearby Large-Scale Structures and the Zone of Avoidance , 2005 .

[73]  Oxford,et al.  Breaking the hierarchy of galaxy formation , 2005, astro-ph/0511338.

[74]  M. Steinmetz,et al.  Multidimensional density estimation and phase-space structure of dark matter haloes , 2005, astro-ph/0507550.

[75]  O. Lahav,et al.  Reconstructed density and velocity fields from the 2MASS redshift survey , 2006, astro-ph/0610005.

[76]  Superclusters of galaxies from the 2dF redshift survey - I. The catalogue , 2006, astro-ph/0603764.

[77]  G. Lucia,et al.  The hierarchical formation of the brightest cluster galaxies , 2006, astro-ph/0606519.

[78]  P. Thomas,et al.  The recycling of gas and metals in galaxy formation: predictions of a dynamical feedback model , 2007, astro-ph/0701407.

[79]  R. Ellis,et al.  Dark matter maps reveal cosmic scaffolding , 2007, Nature.

[80]  M. Blanton,et al.  Environmental Dependence of Properties of Galaxies in the Sloan Digital Sky Survey , 2006, astro-ph/0611610.

[81]  R. Weygaert,et al.  A cosmic watershed: the WVF void detection technique , 2007, 0706.2788.

[82]  J. University,et al.  The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution , 2007, 0705.2072.

[83]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .

[84]  Matthew Browne,et al.  A geometric approach to non-parametric density estimation , 2007, Pattern Recognit..

[85]  F. Kitaura,et al.  Bayesian reconstruction of the cosmological large-scale structure: methodology, inverse algorithms and numerical optimization , 2007, 0705.0429.

[86]  H. Hoekstra,et al.  Weak Gravitational Lensing and Its Cosmological Applications , 2008, 0805.0139.

[87]  Y. Wadadekar,et al.  Submitted to ApJS Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SIXTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2022 .

[88]  Genus Topology of Structure in the Sloan Digital Sky Survey: Model Testing , 2006, astro-ph/0610762.

[89]  M. Neyrinck,et al.  The Aspen-Amsterdam void finder comparison project , 2008, 0803.0918.

[90]  R. Weygaert,et al.  THE SPINE OF THE COSMIC WEB , 2008, 0809.5104.

[91]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[92]  F. Kitaura,et al.  Recovering the non-linear density field from the galaxy distribution with a Poisson-lognormal filter , 2009, 0911.1407.

[93]  Jounghun Lee,et al.  CONSTRAINING THE DARK ENERGY EQUATION OF STATE WITH COSMIC VOIDS , 2007, 0704.0881.

[94]  F. Kitaura,et al.  Cosmic cartography of the large‐scale structure with Sloan Digital Sky Survey data release 6 , 2009, 0906.3978.

[95]  M. Way,et al.  STRUCTURE IN THE THREE-DIMENSIONAL GALAXY DISTRIBUTION. I. METHODS AND EXAMPLE RESULTS , 2010, 1009.0387.

[96]  B. Wandelt,et al.  Voids as a precision probe of dark energy , 2010, 1002.0014.

[97]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[98]  V. Springel,et al.  GENUS STATISTICS USING THE DELAUNAY TESSELLATION FIELD ESTIMATION METHOD. I. TESTS WITH THE MILLENNIUM SIMULATION AND THE SDSS DR7 , 2010, 1006.3768.

[99]  B. Wandelt,et al.  Precision cosmology with voids: definition, methods, dynamics , 2009, 0906.4101.