Targeting novel signaling pathways for resistant acute myeloid leukemia.

[1]  J. Karp,et al.  New Strategies in Acute Myelogenous Leukemia: Leukemogenesis and Personalized Medicine , 2014, Clinical Cancer Research.

[2]  Guoan Zhang,et al.  γCaMKII Shuttles Ca2+/CaM to the Nucleus to Trigger CREB Phosphorylation and Gene Expression , 2014, Cell.

[3]  E. Attar,et al.  New insights in AML biology from genomic analysis. , 2014, Seminars in hematology.

[4]  Ho-June Lee,et al.  Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. , 2014, Cancer cell.

[5]  Jiwang Zhang,et al.  Co-inhibition of NF-κB and JNK is synergistic in TNF-expressing human AML , 2014, The Journal of experimental medicine.

[6]  M. Konopleva,et al.  Evaluation of Apoptosis Induction by Concomitant Inhibition of MEK, mTOR, and Bcl-2 in Human Acute Myelogenous Leukemia Cells , 2014, Molecular Cancer Therapeutics.

[7]  A. Letai,et al.  Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. , 2014, Cancer discovery.

[8]  J. T. Caldwell,et al.  Acute Myeloid Leukemia Cells Harboring MLL Fusion Genes or with the Acute Promyelocytic Leukemia Phenotype Are Sensitive to the Bcl-2-selective Inhibitor ABT-199 , 2014, Leukemia.

[9]  Lincoln D. Stein,et al.  Identification of pre-leukemic hematopoietic stem cells in acute leukemia , 2014, Nature.

[10]  A. Jegga,et al.  MAF mediates crosstalk between Ras-MAPK and mTOR signaling in NF1 , 2014, Oncogene.

[11]  S. Mi,et al.  Identification of functional cooperative mutations of SETD2 in human acute leukemia , 2014, Nature Genetics.

[12]  I. Weissman,et al.  Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission , 2014, Proceedings of the National Academy of Sciences.

[13]  G. Superti-Furga,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms. , 2013, The New England journal of medicine.

[14]  Yamei Chen,et al.  STAT inhibitors for cancer therapy , 2013, Journal of Hematology & Oncology.

[15]  J. Dipersio,et al.  Efficacy, safety, and survival with ruxolitinib in patients with myelofibrosis: results of a median 3-year follow-up of COMFORT-I , 2013, Haematologica.

[16]  T. Naoe,et al.  A novel STAT inhibitor, OPB-31121, has a significant antitumor effect on leukemia with STAT-addictive oncokinases , 2013, Blood Cancer Journal.

[17]  D. Felsher,et al.  BCL-2 inhibition with ABT-737 prolongs survival in an NRAS/BCL-2 mouse model of AML by targeting primitive LSK and progenitor cells. , 2013, Blood.

[18]  K. Hofmann,et al.  TRIAD1 and HHARI bind to and are activated by distinct neddylated Cullin-RING ligase complexes , 2013, The EMBO journal.

[19]  L. Platanias,et al.  The evolution of the TOR pathway and its role in cancer , 2013, Oncogene.

[20]  C. Proud,et al.  Rapamycin enhances eIF4E phosphorylation by activating MAP kinase‐interacting kinase 2a (Mnk2a) , 2013, FEBS letters.

[21]  Ming Yan,et al.  JAK inhibitors suppress t(8;21) fusion protein-induced leukemia , 2013, Leukemia.

[22]  S. Armstrong,et al.  Recent progress toward epigenetic therapies: the example of mixed lineage leukemia. , 2013, Blood.

[23]  L. Platanias,et al.  Acute myeloid leukemia: potential for new therapeutic approaches targeting mRNA translation pathways. , 2013, International journal of hematologic oncology.

[24]  O. Williams,et al.  In focus: MLL-rearranged leukemia , 2013, Leukemia.

[25]  K. Döhner,et al.  Cell cycle-dependent activity of the novel dual PI3K-MTORC1/2 inhibitor NVP-BGT226 in acute leukemia , 2013, Molecular Cancer.

[26]  P. Iversen,et al.  Inhibition of Mnk kinase activity by cercosporamide and suppressive effects on acute myeloid leukemia precursors. , 2013, Blood.

[27]  G. Basso,et al.  MicroRNA-34b promoter hypermethylation induces CREB overexpression and contributes to myeloid transformation , 2013, Haematologica.

[28]  S. Armstrong,et al.  Cell of origin determines clinically relevant subtypes of MLL-rearranged AML , 2013, Leukemia.

[29]  S. Grant,et al.  Dual inhibition of Bcl-2 and Bcl-xL strikingly enhances PI3K inhibition-induced apoptosis in human myeloid leukemia cells through a GSK3- and Bim-dependent mechanism. , 2013, Cancer research.

[30]  J. Rowe,et al.  The myth of the second remission of acute leukemia in the adult. , 2013, Blood.

[31]  T. Mak,et al.  ARIH2 is essential for embryogenesis, and its hematopoietic deficiency causes lethal activation of the immune system , 2012, Nature Immunology.

[32]  Menggang Yu,et al.  The Protein Tyrosine Phosphatase, Shp2, Positively Contributes to FLT3-ITD-Induced Hematopoietic Progenitor Hyperproliferation and Malignant Disease In Vivo , 2012, Leukemia.

[33]  A. Letai,et al.  Relative Mitochondrial Priming of Myeloblasts and Normal HSCs Determines Chemotherapeutic Success in AML , 2012, Cell.

[34]  Stephen L. Abrams,et al.  Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response , 2012, Oncotarget.

[35]  Joshua F. McMichael,et al.  The Origin and Evolution of Mutations in Acute Myeloid Leukemia , 2012, Cell.

[36]  K. Sakamoto,et al.  Sox4 cooperates with CREB in myeloid transformation. , 2012, Blood.

[37]  J. Tamburini,et al.  The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia , 2012, Leukemia.

[38]  Z. Estrov,et al.  Phase 2 study of the JAK kinase inhibitor ruxolitinib in patients with refractory leukemias, including postmyeloproliferative neoplasm acute myeloid leukemia. , 2012, Blood.

[39]  P. van Kerkhof,et al.  Identification of the ubiquitin ligase Triad1 as a regulator of endosomal transport , 2012, Biology Open.

[40]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[41]  A. Tefferi JAK inhibitors for myeloproliferative neoplasms: clarifying facts from myths. , 2012, Blood.

[42]  T. Gilmer,et al.  Combinations of BRAF, MEK, and PI3K/mTOR Inhibitors Overcome Acquired Resistance to the BRAF Inhibitor GSK2118436 Dabrafenib, Mediated by NRAS or MEK Mutations , 2012, Molecular Cancer Therapeutics.

[43]  Joshua F. McMichael,et al.  Clonal evolution in relapsed acute myeloid leukemia revealed by whole genome sequencing , 2011, Nature.

[44]  M. Carroll,et al.  Intrinsic Resistance to JAK2 Inhibition in Myelofibrosis , 2011, Clinical Cancer Research.

[45]  B. Bernstein,et al.  Heterodimeric JAK-STAT Activation as a Mechanism of Persistence to JAK2 Inhibitor Therapy , 2011, Nature.

[46]  R. Pieters,et al.  Integrative analysis of type-I and type-II aberrations underscores the genetic heterogeneity of pediatric acute myeloid leukemia , 2011, Haematologica.

[47]  M. J. Ruiz,et al.  Stat3 signaling in acute myeloid leukemia: ligand-dependent and -independent activation and induction of apoptosis by a novel small-molecule Stat3 inhibitor. , 2011, Blood.

[48]  A. Redig,et al.  Dual mTORC2/mTORC1 Targeting Results in Potent Suppressive Effects on Acute Myeloid Leukemia (AML) Progenitors , 2011, Clinical Cancer Research.

[49]  K. Baggerly,et al.  Targeting of mTORC1/2 by the mTOR kinase inhibitor PP242 induces apoptosis in AML cells under conditions mimicking the bone marrow microenvironment. , 2010, Blood.

[50]  M. Yap,et al.  FGF‐2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3‐K/GSK3β signaling , 2010, Journal of cellular physiology.

[51]  L. Platanias,et al.  Negative Regulatory Effects of Mnk Kinases in the Generation of Chemotherapy-Induced Antileukemic Responses , 2010, Molecular Pharmacology.

[52]  J. Tamburini,et al.  Dual Inhibition of PI3K and mTORC1/2 Signaling by NVP-BEZ235 as a New Therapeutic Strategy for Acute Myeloid Leukemia , 2010, Clinical Cancer Research.

[53]  Z. Estrov,et al.  Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. , 2010, The New England journal of medicine.

[54]  K. Sakamoto,et al.  Targeting CREB for cancer therapy: friend or foe. , 2010, Current cancer drug targets.

[55]  J. McCubrey,et al.  The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients , 2010, Oncotarget.

[56]  Su-Jae Lee,et al.  Triad 1 induces apoptosis by p53 activation , 2010, FEBS letters.

[57]  C. Geest,et al.  MAPK signaling pathways in the regulation of hematopoiesis , 2009, Journal of leukocyte biology.

[58]  P. Jansen,et al.  The ubiquitin ligase Triad1 inhibits myelopoiesis through UbcH7 and Ubc13 interacting domains , 2009, Leukemia.

[59]  Giuseppe Basso,et al.  miR-34b targets cyclic AMP-responsive element binding protein in acute myeloid leukemia. , 2009, Cancer research.

[60]  Huanming Yang,et al.  Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. , 2009, Cancer research.

[61]  F. Luciano,et al.  Deregulation of the mitochondrial apoptotic machinery and development of molecular targeted drugs in acute myeloid leukemia. , 2008, Current cancer drug targets.

[62]  S. Nelson,et al.  CREB regulates Meis1 expression in normal and malignant hematopoietic cells , 2008, Leukemia.

[63]  K. Sakamoto,et al.  CREB is a critical regulator of normal hematopoiesis and leukemogenesis. , 2008, Blood.

[64]  M. Odero,et al.  JAK2-V617F activating mutation in acute myeloid leukemia: prognostic impact and association with other molecular markers , 2007, Leukemia.

[65]  D. Gary Gilliland,et al.  Role of JAK2 in the pathogenesis and therapy of myeloproliferative disorders , 2007, Nature Reviews Cancer.

[66]  K. Sakamoto,et al.  Potential role of CREB as a prognostic marker in acute myeloid leukemia. , 2007, Future oncology.

[67]  Ceri M. Wiggins,et al.  ERK1/2‐dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl‐1 and Bcl‐xL , 2007, The EMBO journal.

[68]  Hao Wang,et al.  Activation of SHP2 Protein-tyrosine Phosphatase Increases HoxA10-induced Repression of the Genes Encoding gp91PHOX and p67PHOX* , 2007, Journal of Biological Chemistry.

[69]  J. Esteve,et al.  Gene expression profiling of acute myeloid leukemia with translocation t(8;16)(p11;p13) and MYST3-CREBBP rearrangement reveals a distinctive signature with a specific pattern of HOX gene expression. , 2006, Cancer research.

[70]  D. Steensma,et al.  JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained , 2006, Leukemia.

[71]  D. Green,et al.  Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. , 2006, Molecular cell.

[72]  J. Jansen,et al.  The E3 ubiquitin-protein ligase Triad1 inhibits clonogenic growth of primary myeloid progenitor cells. , 2005, Blood.

[73]  K. Sakamoto,et al.  Role of cyclic AMP response element binding protein in human leukemias , 2005, Cancer.

[74]  N. Rao,et al.  The role of CREB as a proto-oncogene in hematopoiesis and in acute myeloid leukemia. , 2005, Cancer cell.

[75]  Yufeng Lu,et al.  HOXA9 Activates Transcription of the Gene Encoding gp91Phox during Myeloid Differentiation* , 2005, Journal of Biological Chemistry.

[76]  K. Sakamoto,et al.  Transcriptional Regulators and Myelopoiesis: The Role of Serum Response Factor and CREB as Targets of Cytokine Signaling , 2003, Stem cells.

[77]  S. Bhatia,et al.  Expression of cyclic adenosine monophosphate response-element binding protein in acute leukemia. , 2002, Blood.

[78]  A. Baron,et al.  Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia , 2002, Leukemia.

[79]  S. Karlsson,et al.  Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. , 2001, Blood.

[80]  W. Berdel,et al.  Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. , 2000, Blood.

[81]  E. Eklund,et al.  Tyrosine Phosphorylation of HoxA10 Decreases DNA Binding and Transcriptional Repression during Interferon γ-induced Differentiation of Myeloid Leukemia Cell Lines* , 2000, The Journal of Biological Chemistry.

[82]  B. Johansson,et al.  Deletion of chromosome arm 3p in hematologic malignancies , 1997, Leukemia.

[83]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[84]  E. Estey,et al.  CME Information: Acute myeloid leukemia: 2014 update on risk-stratification and management , 2014 .

[85]  N. Hayward,et al.  Molecular Pathways Molecular Pathways : Mitogen-Activated Protein Kinase Pathway Mutations and Drug Resistance , 2013 .

[86]  Kerby Shedden,et al.  Clonal evolution and devolution after chemotherapy in adult acute myelogenous leukemia. , 2013, Blood.

[87]  Y. Matsubara,et al.  Ras/MAPK syndromes and childhood hemato-oncological diseases , 2012, International Journal of Hematology.

[88]  M. Konopleva,et al.  MEK inhibition enhances ABT-737-induced leukemia cell apoptosis via prevention of ERK-activated MCL-1 induction and modulation of MCL-1/BIM complex , 2012, Leukemia.

[89]  S. Knauer,et al.  Differential regulation of PML-RARα stability by the ubiquitin ligases SIAH1/SIAH2 and TRIAD1. , 2012, The international journal of biochemistry & cell biology.

[90]  K. Sakamoto,et al.  CREB and leukemogenesis. , 2011, Critical reviews in oncogenesis.

[91]  A. Shaywitz,et al.  CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. , 1999, Annual review of biochemistry.

[92]  D. Hossfeld,et al.  3p21 is a recurrent treatment-related breakpoint in myelodysplastic syndrome and acute myeloid leukemia. , 1996, Cytogenetics and cell genetics.