Phased attenuation correction in respiration correlated computed tomography/positron emitted tomography.

The motion of lung tumors with respiration causes difficulties in the imaging with computed tomography (CT) and positronemitted tomography (PET). Since an accurate knowledge of the position of the tumor and the surrounding tissues is needed for radiation treatment planning, it is important to improve CT/PET image acquisition. The purpose of this study was to evaluate the potential to improve image acquisition using phased attenuation correction in respiration correlated CT/PET, where data of both modalities were binned retrospectively. Respiration correlated scans were made on a Siemens Biograph Sensation 16 CT/PET scanner which was modified to make a low pitch CT scan and list mode PET scan possible. A lollipop phantom was used in the experiments. The sphere with a diameter of 3.1 cm was filled with approximately 20 MBq 18F-FDG. Three longitudinal movement amplitudes were tested: 2.5, 3.9, and 4.8 cm. After collection of the raw CT data, list mode PET data, and the respiratory signal CT/PET images were binned to ten phases with the help of in-house-built software. Each PET phase was corrected for attenuation with CT data of the corresponding phase. For comparison, the attenuation correction was also performed with nonrespiration correlated (non-RC) CT data. The volume and the amplitude of the movement were calculated for every phaseof both the CT and PET data (with phased attenuation correction). Maximum and average activity concentrations were compared between the phased and nonphased attenuation corrected PET. With a standard non-RC CT/PET scan, the volume was underestimated by as much as 46% in CT and the PET volume was overestimated to 370%. The volumes found with RC-CT/PET scanning had average deviations of 1.9% (+/- 4.8%) and 1.5% (+/- 3.4%) from the actual volume, for the CT and PET volumes, respectively. Evaluation of the maximum activity concentration showed a clear displacement in the images with non-RC attenuation correction, and activity values were on average14% (+/- 12%) lower than with phased attenuation correction. The standard deviation of the maximum activity values found in the different phases was a factor of 10 smaller when phased attenuation correction was applied. In this phantom study, we have shown that a combination of respiration correlated CT/PET scanning with application of phased attenuation correction can improve the imaging of moving objects and can lead to improved volume estimation and a more precise localization and quantification of the activity.

[1]  C. Ling,et al.  Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. , 2002, Medical physics.

[2]  Gig S Mageras,et al.  Effect of motion on tracer activity determination in CT attenuation corrected PET images: A lung phantom study. , 2005, Medical physics.

[3]  Thomas Beyer,et al.  Dual-modality PET/CT imaging: the effect of respiratory motion on combined image quality in clinical oncology , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[4]  Philippe Lambin,et al.  Effects of radiotherapy planning with a dedicated combined PET-CT-simulator of patients with non-small cell lung cancer on dose limiting normal tissues and radiation dose-escalation: a planning study. , 2005, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[5]  A. Pevsner,et al.  The CT motion quantitation of lung lesions and its impact on PET-measured SUVs. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[6]  A. Pevsner,et al.  Quantitation of respiratory motion during 4D-PET/CT acquisition. , 2004, Medical physics.

[7]  C. Ling,et al.  Effect of respiratory gating on reducing lung motion artifacts in PET imaging of lung cancer. , 2002, Medical physics.

[8]  Suresh Senan,et al.  Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. , 2003, International journal of radiation oncology, biology, physics.

[9]  S M Larson,et al.  Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding , 1997, Cancer.

[10]  M. V. van Herk,et al.  Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. , 2002, International journal of radiation oncology, biology, physics.

[11]  Thomas Beyer,et al.  Positron emission tomography/computed tomography--imaging protocols, artifacts, and pitfalls. , 2004, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[12]  Cyrill Burger,et al.  Respiration-induced attenuation artifact at PET/CT: technical considerations. , 2003, Radiology.

[13]  R. Mohan,et al.  Acquiring a four-dimensional computed tomography dataset using an external respiratory signal. , 2003, Physics in medicine and biology.

[14]  C. Ling,et al.  Effect of respiratory gating on quantifying PET images of lung cancer. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[15]  Cyrill Burger,et al.  PET-CT image co-registration in the thorax: influence of respiration , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[16]  Thomas Beyer,et al.  X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. , 2003, Seminars in nuclear medicine.

[17]  E Yorke,et al.  Four-dimensional (4D) PET/CT imaging of the thorax. , 2004, Medical physics.

[18]  M van Herk,et al.  Fusion of respiration-correlated PET and CT scans: correlated lung tumour motion in anatomical and functional scans , 2005, Physics in medicine and biology.

[19]  H Shirato,et al.  Impact of respiratory movement on the computed tomographic images of small lung tumors in three-dimensional (3D) radiotherapy. , 2000, International journal of radiation oncology, biology, physics.

[20]  Paul Kinahan,et al.  Attenuation correction for a combined 3D PET/CT scanner. , 1998, Medical physics.

[21]  Suresh Senan,et al.  Literature-based recommendations for treatment planning and execution in high-dose radiotherapy for lung cancer. , 2004, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[22]  R. Lecomte,et al.  Respiratory gating for 3-dimensional PET of the thorax: feasibility and initial results. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[23]  P. Dupont,et al.  Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[24]  Anne Bol,et al.  Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.