Understanding the Performance-Limiting Factors of Cs2AgBiBr6 Double-Perovskite Solar Cells

Double perovskites have recently emerged as possible alternatives to lead-based halide perovskites for photovoltaic applications. In particular, Cs2AgBiBr6 has been the subject of several studies b...

[1]  Zongping Shao,et al.  Simultaneous Power Conversion Efficiency and Stability Enhancement of Cs2AgBiBr6 Lead‐Free Inorganic Perovskite Solar Cell through Adopting a Multifunctional Dye Interlayer , 2020, Advanced Functional Materials.

[2]  J. Neaton,et al.  Carrier Diffusion Lengths Exceeding 1 μm Despite Trap-Limited Transport in Halide Double Perovskites , 2020, ACS Energy Letters.

[3]  V. Dhanak,et al.  Isotype Heterojunction Solar Cells Using n-Type Sb2Se3 Thin Films , 2020, Chemistry of Materials.

[4]  G. Bacher,et al.  Fine Structure of the Optical Absorption Resonance in Cs2AgBiBr6 Double Perovskite Thin Films , 2020 .

[5]  M. Johnston,et al.  Revealing the origin of voltage loss in mixed-halide perovskite solar cells , 2020, Energy & Environmental Science.

[6]  Wentao Song,et al.  Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photodetectors with good Ohmic contact behaviours , 2020 .

[7]  P. Woodward,et al.  Cs2AgBiBr6−xClx solid solutions – band gap engineering with halide double perovskites , 2019, Journal of Materials Chemistry C.

[8]  Jay B. Patel,et al.  Charge‐Carrier Dynamics, Mobilities, and Diffusion Lengths of 2D–3D Hybrid Butylammonium–Cesium–Formamidinium Lead Halide Perovskites , 2019, Advanced Functional Materials.

[9]  Yixin Zhao,et al.  Chemical stability and instability of inorganic halide perovskites , 2019, Energy & Environmental Science.

[10]  H. Fu Review of lead-free halide perovskites as light-absorbers for photovoltaic applications: From materials to solar cells , 2019, Solar Energy Materials and Solar Cells.

[11]  David Cahen,et al.  Photovoltaic solar cell technologies: analysing the state of the art , 2019, Nature Reviews Materials.

[12]  Xing’ao Li,et al.  Lead-Free Halide Double Perovskite Materials: A New Superstar Toward Green and Stable Optoelectronic Applications , 2019, Nano-micro letters.

[13]  Yang Yang,et al.  Composition Stoichiometry of Cs2AgBiBr6 Films for Highly Efficient Lead-Free Perovskite Solar Cells. , 2019, Nano letters.

[14]  S. Seok,et al.  Intrinsic Instability of Inorganic–Organic Hybrid Halide Perovskite Materials , 2019, Advanced materials.

[15]  Thomas Kirchartz,et al.  Open-Circuit Voltages Exceeding 1.26 V in Planar Methylammonium Lead Iodide Perovskite Solar Cells , 2018, ACS Energy Letters.

[16]  Yang Yang,et al.  Addressing the stability issue of perovskite solar cells for commercial applications , 2018, Nature Communications.

[17]  Guangda Niu,et al.  Efficient and stable emission of warm-white light from lead-free halide double perovskites , 2018, Nature.

[18]  D. Schlettwein,et al.  Exciton Dynamics and Electron–Phonon Coupling Affect the Photovoltaic Performance of the Cs2AgBiBr6 Double Perovskite , 2018, The Journal of Physical Chemistry C.

[19]  P. Zeng,et al.  High‐Quality Sequential‐Vapor‐Deposited Cs 2 AgBiBr 6 Thin Films for Lead‐Free Perovskite Solar Cells , 2018, Solar RRL.

[20]  T. Savenije,et al.  Band-Like Charge Transport in Cs2AgBiBr6 and Mixed Antimony–Bismuth Cs2AgBi1–xSbxBr6 Halide Double Perovskites , 2018, ACS omega.

[21]  Lixin Xiao,et al.  Highly Efficient and Stable Self‐Powered Ultraviolet and Deep‐Blue Photodetector Based on Cs2AgBiBr6/SnO2 Heterojunction , 2018, Advanced Optical Materials.

[22]  A. Walsh,et al.  Giant Electron-Phonon Coupling and Deep Conduction Band Resonance in Metal Halide Double Perovskite. , 2018, ACS nano.

[23]  Shijing Sun,et al.  Fundamental Carrier Lifetime Exceeding 1 µs in Cs2AgBiBr6 Double Perovskite , 2018 .

[24]  T. Unold,et al.  Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells , 2018, Nature Energy.

[25]  X. Hou,et al.  High-Quality Cs2 AgBiBr6 Double Perovskite Film for Lead-Free Inverted Planar Heterojunction Solar Cells with 2.2 % Efficiency. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  M. Johnston,et al.  Interplay of Structural and Optoelectronic Properties in Formamidinium Mixed Tin–Lead Triiodide Perovskites , 2018, Advanced Functional Materials.

[27]  Feliciano Giustino,et al.  The geometric blueprint of perovskites , 2018, Proceedings of the National Academy of Sciences.

[28]  A. Alivisatos,et al.  The Making and Breaking of Lead-Free Double Perovskite Nanocrystals of Cesium Silver-Bismuth Halide Compositions. , 2018, Nano letters.

[29]  Wei Huang,et al.  Long Electron–Hole Diffusion Length in High‐Quality Lead‐Free Double Perovskite Films , 2018, Advanced materials.

[30]  Matthew D. Smith,et al.  White-Light Emission from Layered Halide Perovskites. , 2018, Accounts of chemical research.

[31]  T. Savenije,et al.  Charge Carrier Dynamics in Cs2AgBiBr6 Double Perovskite , 2018, The journal of physical chemistry. C, Nanomaterials and interfaces.

[32]  T. Savenije,et al.  Charge Carrier Dynamics in Cs 2 AgBiBr 6 Double Perovskite , 2018 .

[33]  Guangda Niu,et al.  Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit , 2017 .

[34]  M. Kanatzidis,et al.  Strong Electron–Phonon Coupling and Self-Trapped Excitons in the Defect Halide Perovskites A3M2I9 (A = Cs, Rb; M = Bi, Sb) , 2017 .

[35]  Wei Huang,et al.  Lead‐Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives , 2017, Advanced materials.

[36]  M. Thompson,et al.  Vibronic Structure in Room Temperature Photoluminescence of the Halide Perovskite Cs3Bi2Br9. , 2017, Inorganic chemistry.

[37]  F. Giustino,et al.  Cs2InAgCl6: A New Lead-Free Halide Double Perovskite with Direct Band Gap. , 2016, The journal of physical chemistry letters.

[38]  Luis M. Pazos-Outón,et al.  Research data supporting: "Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling" , 2016 .

[39]  Yanfa Yan,et al.  Thermodynamic Stability and Defect Chemistry of Bismuth-Based Lead-Free Double Perovskites. , 2016, ChemSusChem.

[40]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[41]  F. Giustino,et al.  Band Gaps of the Lead-Free Halide Double Perovskites Cs2BiAgCl6 and Cs2BiAgBr6 from Theory and Experiment. , 2016, The journal of physical chemistry letters.

[42]  Shijing Sun,et al.  Exploring the properties of lead-free hybrid double perovskites using a combined computational-experimental approach , 2016, 1606.02916.

[43]  F. Giustino,et al.  Lead-Free Halide Double Perovskites via Heterovalent Substitution of Noble Metals. , 2016, The journal of physical chemistry letters.

[44]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[45]  Aslihan Babayigit,et al.  Toxicity of organometal halide perovskite solar cells. , 2016, Nature materials.

[46]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[47]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[48]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[49]  A. Cavallini,et al.  Surface photovoltage spectroscopy - method and applications , 2010 .

[50]  Thomas Kirchartz,et al.  Detailed balance and reciprocity in solar cells , 2008 .

[51]  E. Centurioni,et al.  Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. , 2005, Applied optics.

[52]  A. Vogler,et al.  Electronic Spectra and Photochemistry of Tin(II), Lead(II), Antimony( III), and Bismuth(III) Bromide Complexes in Solution. , 1994 .

[53]  A. Vogler,et al.  Electronic Spectra and Photochemistry of Tin(II), Lead(II), Antimony(III), and Bismuth(III) Bromide Complexes in Solution , 1993 .

[54]  C. P. Lindsey,et al.  Detailed comparison of the Williams–Watts and Cole–Davidson functions , 1980 .

[55]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .