Self-organizing Map Initialization

The solution obtained by Self-Organizing Map (SOM) strongly depends on the initial cluster centers. However, all existing SOM initialization methods do not guarantee to obtain a better minimal solution. Generally, we can group these methods in two classes: random initialization and data analysis based initialization classes. This work proposes an improvement of linear projection initialization method. This method belongs to the second initialization class. Instead of using regular rectangular grid our method combines a linear projection technique with irregular rectangular grid. By this way the distribution of results produced by the linear projection technique is considred. The experiments confirm that the proposed method gives better solutions compared to its original version.

[1]  E. Forgy,et al.  Cluster analysis of multivariate data : efficiency versus interpretability of classifications , 1965 .

[2]  R. Casey,et al.  Advances in Pattern Recognition , 1971 .

[3]  John W. Sammon,et al.  A Nonlinear Mapping for Data Structure Analysis , 1969, IEEE Transactions on Computers.

[4]  Joydeep Ghosh,et al.  Multiclassifier Systems: Back to the Future , 2002, Multiple Classifier Systems.

[5]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[6]  Otto Opitz,et al.  Information and Classification , 1993 .

[7]  Mu-Chun Su,et al.  Improving the Self-Organizing Feature Map Algorithm Using an Efficient Initialization Scheme , 2002 .

[8]  Alfons Juan-Císcar,et al.  Comparison of Four Initialization Techniques for the K -Medians Clustering Algorithm , 2000, SSPR/SPR.

[9]  I. Guyon,et al.  Detecting stable clusters using principal component analysis. , 2003, Methods in molecular biology.

[10]  A. Ultsch,et al.  Self-Organizing Neural Networks for Visualisation and Classification , 1993 .

[11]  G. W. Milligan,et al.  An examination of the effect of six types of error perturbation on fifteen clustering algorithms , 1980 .

[12]  L. Lebart,et al.  Statistique exploratoire multidimensionnelle , 1995 .

[13]  Jean-Charles Lamirel,et al.  New classification quality estimators for analysis of documentary information: Application to patent analysis and web mapping , 2004, Scientometrics.

[14]  Joydeep Ghosh,et al.  Cluster Ensembles A Knowledge Reuse Framework for Combining Partitionings , 2002, AAAI/IAAI.

[15]  Man Lan,et al.  Initialization of cluster refinement algorithms: a review and comparative study , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[16]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[17]  Pedro Larrañaga,et al.  An empirical comparison of four initialization methods for the K-Means algorithm , 1999, Pattern Recognit. Lett..

[18]  Paul S. Bradley,et al.  Refining Initial Points for K-Means Clustering , 1998, ICML.

[19]  Teuvo Kohonen,et al.  The self-organizing map , 1990 .

[20]  Pat Langley,et al.  Editorial: On Machine Learning , 1986, Machine Learning.