In vivo 1H NMR spectroscopy of the human brain at 9.4 T: initial results.

[1]  K. Uğurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at high magnetic fields: Metabolite quantification at 4T vs. 7T , 2009 .

[2]  Rolf Gruetter,et al.  MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3T and 7T , 2009, Magnetic resonance in medicine.

[3]  Rolf Gruetter,et al.  1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile. , 2008, Journal of magnetic resonance.

[4]  K. Uğurbil,et al.  Single Voxel MR Spectroscopy with Echo Times Below 2 ms at 16.4 T in the Rat Brain: First in vivo Results , 2008 .

[5]  Rolf Gruetter,et al.  Proton T2 relaxation time of J‐coupled cerebral metabolites in rat brain at 9.4 T , 2008, NMR in biomedicine.

[6]  C. Cudalbu,et al.  Rat brain metabolite relaxation time estimates using magnetic resonance spectroscopy at two different field strengths , 2008 .

[7]  G. Metzger,et al.  Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject‐dependent transmit phase measurements , 2008, Magnetic resonance in medicine.

[8]  Arend Heerschap,et al.  Towards 1H-MRSI of the human brain at 7T with slice-selective adiabatic refocusing pulses , 2008, Magnetic Resonance Materials in Physics, Biology and Medicine.

[9]  Keith R Thulborn,et al.  Safety of human MRI at static fields above the FDA 8T guideline: Sodium imaging at 9.4T does not affect vital signs or cognitive ability , 2007, Journal of magnetic resonance imaging : JMRI.

[10]  Vasily L Yarnykh,et al.  Actual flip‐angle imaging in the pulsed steady state: A method for rapid three‐dimensional mapping of the transmitted radiofrequency field , 2007, Magnetic resonance in medicine.

[11]  Peter Andersen,et al.  9.4T human MRI: Preliminary results , 2006, Magnetic resonance in medicine.

[12]  B. Mueller,et al.  Signal‐to‐noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo‐planar spectroscopic imaging , 2006, Magnetic resonance in medicine.

[13]  Sanjay Kalra,et al.  T2 measurement and quantification of glutamate in human brain in vivo , 2006, Magnetic resonance in medicine.

[14]  Terence W Nixon,et al.  High magnetic field water and metabolite proton T1 and T2 relaxation in rat brain in vivo , 2006, Magnetic resonance in medicine.

[15]  Steen Moeller,et al.  B1 destructive interferences and spatial phase patterns at 7 T with a head transceiver array coil , 2005, Magnetic resonance in medicine.

[16]  Chris Boesch,et al.  Integrated data acquisition and processing to determine metabolite contents, relaxation times, and macromolecule baseline in single examinations of individual subjects , 2005, Magnetic resonance in medicine.

[17]  G. Matson,et al.  Observation of coupled 1H metabolite resonances at long TE , 2005, Magnetic resonance in medicine.

[18]  Daniel Pelletier,et al.  Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. , 2005, Brain : a journal of neurology.

[19]  Olli Gröhn,et al.  Exchange‐influenced T2ρ contrast in human brain images measured with adiabatic radio frequency pulses , 2005, Magnetic resonance in medicine.

[20]  A. Mackay,et al.  Proton T2 relaxation of cerebral metabolites of normal human brain over large TE range , 2005, NMR in biomedicine.

[21]  Peter Andersen,et al.  Highly resolved in vivo 1H NMR spectroscopy of the mouse brain at 9.4 T , 2004, Magnetic resonance in medicine.

[22]  Jürgen Gieseke,et al.  1H metabolite relaxation times at 3.0 tesla: Measurements of T1 and T2 values in normal brain and determination of regional differences in transverse relaxation , 2004, Journal of magnetic resonance imaging : JMRI.

[23]  Jürgen Gallinat,et al.  Glutamate concentrations in human brain using single voxel proton magnetic resonance spectroscopy at 3 Tesla , 2004, NeuroImage.

[24]  Michael Erb,et al.  Comparison of longitudinal metabolite relaxation times in different regions of the human brain at 1.5 and 3 Tesla , 2003, Magnetic resonance in medicine.

[25]  Wei Chen,et al.  Changes in the proton T2 relaxation times of cerebral water and metabolites during forebrain ischemia in rat at 9.4 T , 2003, Magnetic resonance in medicine.

[26]  D R Rutgers,et al.  Relaxation times of choline, creatine and N‐acetyl aspartate in human cerebral white matter at 1.5 T , 2002, NMR in biomedicine.

[27]  Peter Andersen,et al.  Proton T2 relaxation study of water, N‐acetylaspartate, and creatine in human brain using Hahn and Carr‐Purcell spin echoes at 4T and 7T , 2002, Magnetic resonance in medicine.

[28]  L DelaBarre,et al.  The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. , 2001, Journal of magnetic resonance.

[29]  R. Gruetter,et al.  Metabolic changes in quinolinic acid‐lesioned rat striatum detected non‐invasively by in vivo 1H NMR spectroscopy , 2001, Journal of neuroscience research.

[30]  E Moser,et al.  Multivoxel 3D proton spectroscopy in the brain at 1.5 versus 3.0 T: signal-to-noise ratio and resolution comparison. , 2001, AJNR. American journal of neuroradiology.

[31]  E Moser,et al.  Proton T 1 and T 2 relaxation times of human brain metabolites at 3 Tesla , 2001, NMR in biomedicine.

[32]  P. Barker,et al.  Single‐voxel proton MRS of the human brain at 1.5T and 3.0T , 2001, Magnetic resonance in medicine.

[33]  R. Menon,et al.  Comparison of the quantification precision of human short echo time 1H spectroscopy at 1.5 and 4.0 Tesla , 2000, Magnetic resonance in medicine.

[34]  V. Govindaraju,et al.  Proton NMR chemical shifts and coupling constants for brain metabolites , 2000, NMR in biomedicine.

[35]  R Gruetter,et al.  Field mapping without reference scan using asymmetric echo‐planar techniques , 2000, Magnetic resonance in medicine.

[36]  R Gruetter,et al.  Toward an in vivo neurochemical profile: quantification of 18 metabolites in short-echo-time (1)H NMR spectra of the rat brain. , 1999, Journal of magnetic resonance.

[37]  R. Gruetter,et al.  In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time , 1999, Magnetic resonance in medicine.

[38]  Jens Frahm,et al.  Localized proton MRS of the human hippocampus: Metabolite concentrations and relaxation times , 1999, Magnetic resonance in medicine.

[39]  M. Garwood,et al.  Simultaneous in vivo spectral editing and water suppression , 1998, NMR in biomedicine.

[40]  L. Wald,et al.  Theory and application of array coils in MR spectroscopy , 1997, NMR in biomedicine.

[41]  K Uğurbil,et al.  Observation of resolved glucose signals in 1H NMR spectra of the human brain at 4 Tesla , 1996, Magnetic resonance in medicine.

[42]  Stefan Posse,et al.  Anomalous Transverse Relaxation in 1H Spectroscopy in Human Brain at 4 Tesla , 1995, Magnetic resonance in medicine.

[43]  Jullie W Pan,et al.  Evaluation of cerebral gray and white matter metabolite differences by spectroscopic imaging at 4.1T , 1994, Magnetic resonance in medicine.

[44]  C J Hardy,et al.  An NMR Phased Array for Human Cardiac 31P Spectroscopy , 1992, Magnetic resonance in medicine.

[45]  K. Sundell,et al.  Species differences in cerebral taurine concentrations correlate with brain water content , 1991, Brain Research.

[46]  H. Bruhn,et al.  Localized high‐resolution proton NMR spectroscopy using stimulated echoes: Initial applications to human brain in vivo , 1989, Magnetic resonance in medicine.

[47]  K Ugurbil,et al.  In vivo 1H NMR spectroscopy of the human brain at 7 T , 2001, Magnetic resonance in medicine.