Tuning the ferroelectric polarization in a multiferroic metal-organic framework.

We perform density functional theory calculations on a recently synthesized metal-organic framework (MOF) with a perovskite-like topology ABX3, i.e., [CH3CH2NH3]Mn(HCOO)3, and predict a multiferroic behavior, i.e., a coexistence of ferroelectricity and ferromagnetism. A peculiar canted ordering of the organic A-cation dipole moments gives rise to a ferroelectric polarization of ~2 μC/cm(2). Starting from these findings, we show that by choosing different organic A cations, it is possible to tune the ferroelectric polarization and increase it up to 6 μC/cm(2). The possibility of changing the magnitude and/or the canting of the organic molecular dipole opens new routes toward engineering ferroelectric polarization in the new class of multiferroic metal-organic frameworks.

[1]  P. Jain,et al.  Ferroelasticity in a metal–organic framework perovskite; towards a new class of multiferroics , 2013 .

[2]  P. Jain,et al.  Dimethylammonium copper formate [(CH 3 ) 2 NH 2 ]Cu(HCOO) 3 : A metal-organic framework with quasi-one-dimensional antiferromagnetism and magnetostriction , 2013 .

[3]  Young Sun,et al.  Magnetoelectric coupling in the paramagnetic state of a metal-organic framework , 2013, Scientific Reports.

[4]  A. Stroppa,et al.  Hybrid Improper Ferroelectricity in a Multiferroic and Magnetoelectric Metal‐Organic Framework , 2013, Advanced materials.

[5]  W. Li,et al.  Mechanical properties of a metal-organic framework containing hydrogen-bonded bifluoride linkers. , 2013, Chemical communications.

[6]  Y. Chabal,et al.  When metal organic frameworks turn into linear magnets , 2013, 1302.6886.

[7]  G. Giovannetti,et al.  Diisopropylammonium Bromide Is a High-Temperature Molecular Ferroelectric Crystal , 2013, Science.

[8]  I. Bersuker Pseudo-Jahn-teller effect--a two-state paradigm in formation, deformation, and transformation of molecular systems and solids. , 2013, Chemical reviews.

[9]  Y. Chabal,et al.  Diffusion of small molecules in metal organic framework materials. , 2012, Physical review letters.

[10]  B. Liu,et al.  A new series of chiral metal formate frameworks of [HONH3][M(II)(HCOO)3] (M = Mn, Co, Ni, Zn, and Mg): synthesis, structures, and properties. , 2012, Inorganic chemistry.

[11]  J. Rodríguez-Carvajal,et al.  The role of order-disorder transitions in the quest for molecular multiferroics: structural and magnetic neutron studies of a mixed valence iron(II)-iron(III) formate framework. , 2012, Journal of the American Chemical Society.

[12]  Joseph M. Zadrozny,et al.  Exchange coupling and magnetic blocking in bipyrimidyl radical-bridged dilanthanide complexes. , 2012, Journal of the American Chemical Society.

[13]  P. K. Bharadwaj,et al.  Synthesis, Characterization, and Magnetic Studies of Coordination Polymers with Co(II) and Mn(II) Ions , 2012 .

[14]  F. Lloret,et al.  Multiferroics by rational design: implementing ferroelectricity in molecule-based magnets. , 2012, Angewandte Chemie.

[15]  Wei Li,et al.  Negative linear compressibility of a metal-organic framework. , 2012, Journal of the American Chemical Society.

[16]  C. Fennie,et al.  Turning ABO3 Antiferroelectrics into Ferroelectrics: Design Rules for Practical Rotation‐Driven Ferroelectricity in Double Perovskites and A3B2O7 Ruddlesden‐Popper Compounds , 2012, 1205.5526.

[17]  P. Jain,et al.  Influence of ligand field stabilization energy on the elastic properties of multiferroic MOFs with the perovskite architecture. , 2012, Dalton transactions.

[18]  Chung-Cherng Lin,et al.  Exceptionally low shear modulus in a prototypical imidazole-based metal-organic framework. , 2012, Physical review letters.

[19]  R. Xiong,et al.  Ferroelectric metal-organic frameworks. , 2012, Chemical reviews.

[20]  T. Palstra,et al.  Coexisting Ferromagnetic and Ferroelectric Order in a CuCl4-based Organic–Inorganic Hybrid , 2012 .

[21]  Takayoshi Nakamura,et al.  A multiferroic perdeutero metal-organic framework. , 2011, Angewandte Chemie.

[22]  D. Samsonenko,et al.  Quantum Rotations and Chiral Polarization of Qubit Prototype Molecules in a Highly Porous Metal–Organic Framework: 1H NMR T1 Study , 2011 .

[23]  W. Li,et al.  Magnetic and mechanical anisotropy in a manganese 2-methylsuccinate framework structure. , 2011, Chemistry.

[24]  Song Gao,et al.  Coexistence of magnetic and electric orderings in the metal-formate frameworks of [NH4][M(HCOO)3]. , 2011, Journal of the American Chemical Society.

[25]  P. Jain,et al.  Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal-organic framework. , 2011, Angewandte Chemie.

[26]  C. Fennie,et al.  Octahedral Rotation‐Induced Ferroelectricity in Cation Ordered Perovskites , 2011, Advanced materials.

[27]  D. Vanderbilt,et al.  Polar distortions in hydrogen bonded organic ferroelectrics , 2011, 1105.0766.

[28]  A. Stroppa,et al.  Large ferroelectric polarization in the new double perovskite NaLaMnWO6 induced by non-polar instabilities. , 2011, Physical chemistry chemical physics : PCCP.

[29]  Philippe Ghosez,et al.  Multiferroics: Coupling of three lattice instabilities. , 2011, Nature materials.

[30]  James M Rondinelli,et al.  Structure and Properties of Functional Oxide Thin Films: Insights From Electronic‐Structure Calculations , 2011, Advanced materials.

[31]  C. Fennie,et al.  Hybrid improper ferroelectricity: a mechanism for controllable polarization-magnetization coupling. , 2011, Physical review letters.

[32]  M. Parrinello,et al.  Probing the mechanical properties of hybrid inorganic-organic frameworks: a computational and experimental study. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[33]  Y. Tokura,et al.  Above-room-temperature ferroelectricity in a single-component molecular crystal , 2010, Nature.

[34]  M. A. Señarís-Rodríguez,et al.  Characterization of the order-disorder dielectric transition in the hybrid organic-inorganic perovskite-like formate Mn(HCOO)(3)[(CH(3))(2)NH(2)]. , 2010, Inorganic chemistry.

[35]  Song Gao,et al.  Metal-organic perovskites: synthesis, structures, and magnetic properties of [C(NH2)3][M(II)(HCOO)3] (M = Mn, Fe, Co, Ni, Cu, and Zn; C(NH2)3 = guanidinium). , 2009, Chemistry.

[36]  R. Ramesh Materials science: Emerging routes to multiferroics , 2009, Nature.

[37]  P. Jain,et al.  Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the perovskite ABX3 architecture. , 2009, Journal of the American Chemical Society.

[38]  D. Khomskii,et al.  Classifying multiferroics: Mechanisms and effects , 2009 .

[39]  G. Righini,et al.  Magnetodielectric coupling of a polar organic-inorganic hybrid Cr(II) phosphonate , 2008 .

[40]  Philippe Ghosez,et al.  Improper ferroelectricity in perovskite oxide artificial superlattices , 2008, Nature.

[41]  Anthony K. Cheetham,et al.  There's Room in the Middle , 2007, Science.

[42]  Zhe-Ming Wang,et al.  Ferroelectric porous molecular crystal, [Mn3(HCOO)6](C2H5OH), exhibiting ferrimagnetic transition. , 2006, Journal of the American Chemical Society.

[43]  J. Paier,et al.  Screened hybrid density functionals applied to solids. , 2006, The Journal of chemical physics.

[44]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[45]  Bin Zhang,et al.  Anionic NaCl-type frameworks of [Mn(II)(HCOO)(3)(-)], templated by alkylammonium, exhibit weak ferromagnetism. , 2004, Dalton transactions.

[46]  G. Righini,et al.  Cr[(H3N-(CH2)2-PO3)(Cl)(H2O)]: X-ray single-crystal structure and magnetism of a polar organic-inorganic hybrid chromium(II) organophosphonate. , 2003, Inorganic chemistry.

[47]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[48]  Gérard Férey,et al.  Prospects for Giant Pores , 1999, Science.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  R. W. Parry,et al.  Dipole Moment Studies. IV. Trends in Dipole Moments , 1966 .

[51]  S. Cheong,et al.  Multiferroics: a magnetic twist for ferroelectricity. , 2007, Nature materials.