Detailed evolutionary models of massive contact binaries – I. Model grids and synthetic populations for the Magellanic Clouds

The majority of close massive binary stars with initial periods of a few days experience a contact phase, in which both stars overflow their Roche lobes simultaneously. We perform the first dedicated study of the evolution of massive contact binaries and provide a comprehensive prediction of their observed properties. We compute 2790 detailed binary models for the Large and Small Magellanic Clouds each, assuming mass transfer to be conservative. The initial parameter space for both grids span total masses from 20 to 80$\, \mathrm{M}_\odot$ , orbital periods of 0.6–2 d and mass ratios of 0.6–1.0. We find that models that remain in contact over nuclear time-scales evolve towards equal masses, echoing the mass ratios of their observed counterparts. Ultimately, the fate of our nuclear-time-scale models is to merge on the main sequence. Our predicted period–mass ratio distributions of O-type contact binaries are similar for both galaxies, and we expect 10 such systems together in both Magellanic Clouds. While we can largely reproduce the observed distribution, we overestimate the population of equal-mass contact binaries. This situation is somewhat remedied if we also account for binaries that are nearly in contact. Our theoretical distributions work particularly well for contact binaries with periods <2 d and total masses $\lessapprox 45\, \mathrm{M}_\odot \,$. We expect stellar winds, non-conservative mass transfer, and envelope inflation to have played a role in the formation of the more massive and longer-period contact binaries.

[1]  Michael Perryman,et al.  Stellar Structure and Evolution , 2021, Fundamentals of Astrophysics.

[2]  S. D. Mink,et al.  Constraining the overcontact phase in massive binary evolution. I. Mixing in V382 Cyg, VFTS 352, and OGLE SMC-SC10 108086 , 2021, Astronomy & Astrophysics.

[3]  T. Henning,et al.  A relation between the radial velocity dispersion of young clusters and their age , 2021, Astronomy & Astrophysics.

[4]  H. Sana,et al.  BAT99 126: A multiple Wolf-Rayet system in the Large Magellanic Cloud with a massive near-contact binary , 2020, Astronomy & Astrophysics.

[5]  I. Mandel,et al.  Chemically homogeneous evolution: a rapid population synthesis approach , 2020, Monthly Notices of the Royal Astronomical Society.

[6]  N. Langer,et al.  Precollapse Properties of Superluminous Supernovae and Long Gamma-Ray Burst Progenitor Models , 2020, The Astrophysical Journal.

[7]  N. Langer,et al.  Internal circulation in tidally locked massive binary stars: Consequences for double black hole formation , 2020, Astronomy & Astrophysics.

[8]  E. Ramirez-Ruiz,et al.  The Art of Modeling Stellar Mergers and the Case of the B[e] Supergiant R4 in the Small Magellanic Cloud , 2020, The Astrophysical Journal.

[9]  S. Qian,et al.  Different evolutionary pathways for the two subtypes of contact binaries , 2020 .

[10]  F. Abdalla,et al.  Cosmic rates of black hole mergers and pair-instability supernovae from chemically homogeneous binary evolution , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  A. Bloch,et al.  Energy optimization in extrasolar planetary systems: the transition from peas-in-a-pod to runaway growth , 2020, Monthly Notices of the Royal Astronomical Society.

[12]  V. Springel,et al.  Stellar mergers as the origin of magnetic massive stars , 2019, Nature.

[13]  N. Langer,et al.  Clues on the Origin and Evolution of Massive Contact Binaries: Atmosphere Analysis of VFTS 352 , 2019, The Astrophysical Journal.

[14]  Y. Nazé,et al.  Quest for the tertiary component in Cyg OB2 #5 , 2019, Astronomy & Astrophysics.

[15]  N. Langer,et al.  Constraining mixing in massive stars in the Small Magellanic Cloud , 2019, Astronomy & Astrophysics.

[16]  I. Mandel,et al.  Massive Stellar Mergers as Precursors of Hydrogen-rich Pulsational Pair Instability Supernovae , 2019, The Astrophysical Journal.

[17]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics (MESA): Pulsating Variable Stars, Rotation, Convective Boundaries, and Energy Conservation , 2019, The Astrophysical Journal Supplement Series.

[18]  Yuangui Yang,et al.  A Comprehensive Study of Three Early-type Contact Twin Binaries: CT Tau, GU Mon, and V701 Sco , 2019, The Astronomical Journal.

[19]  Shanghai,et al.  Explosions of blue supergiants from binary mergers for SN 1987A , 2018, Monthly Notices of the Royal Astronomical Society.

[20]  I. Bonnell,et al.  The formation of high-mass binary star systems , 2018, Monthly Notices of the Royal Astronomical Society.

[21]  S. Qian,et al.  New CCD photometric investigation of the early-type overcontact binary BH Cen in the young star-forming Galactic cluster IC 2944 , 2018 .

[22]  N. Langer,et al.  Related Progenitor Models for Long-duration Gamma-Ray Bursts and Type Ic Superluminous Supernovae , 2018, 1804.07317.

[23]  O. H. Ramírez-Agudelo,et al.  An excess of massive stars in the local 30 Doradus starburst , 2018, Science.

[24]  D. Bisikalo,et al.  Gas–Dynamical Features of the Envelopes of Contact Binary Stars , 2017 .

[25]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[26]  D. Sz'ecsi Single and binary stellar progenitors of long-duration gamma-ray bursts , 2017, 1710.05655.

[27]  Astronomy,et al.  Forming spectroscopic massive protobinaries by disc fragmentation , 2017, 1710.01162.

[28]  Technologies,et al.  Properties of six short-period massive binaries: a study of the effects of binarity on surface chemical abundances , 2017, 1709.00937.

[29]  D. Montes,et al.  The massive multiple system HD 64315 , 2017, 1708.00849.

[30]  Kaitlin M. Kratter,et al.  Dynamical Formation of Close Binaries during the Pre-main-sequence Phase , 2017, 1706.09894.

[31]  I. Mandel,et al.  Ultra-luminous X-ray sources and neutron-star-black-hole mergers from very massive close binaries at low metallicity , 2017, 1705.04734.

[32]  H. Umeda,et al.  Progenitor Model of SN 1987A Based on the Slow Merger Scenario: Impacts of the Envelope Rotation , 2017, 1705.04084.

[33]  N. R. Walborn,et al.  The VLT-FLAMES Tarantula Survey XXVII. Physical parameters of B-type main-sequence binary systems in the Tarantula nebula , 2017, 1704.07131.

[34]  H. Sana,et al.  A dearth of short-period massive binaries in the young massive star forming region M 17 - Evidence for a large orbital separation at birth? , 2017, 1702.02153.

[35]  O. H. Ramírez-Agudelo,et al.  The VLT-FLAMES Tarantula Survey XXIV. Stellar properties of the O-type giants and supergiants in 30 Doradus , 2017, 1701.04758.

[36]  D. Vanbeveren,et al.  A comparison between observed Algol-type double stars in the Solar neighborhood and evolutionary computations of galactic case A binaries with a B-type primary at birth , 2016, 1611.08398.

[37]  N. Langer,et al.  Metallicity dependence of envelope inflation in massive stars , 2016, 1611.07280.

[38]  H. Sana,et al.  The multiplicity of massive stars: a 2016 view , 2016, Proceedings of the International Astronomical Union.

[39]  A. Hagen,et al.  Swift Ultraviolet Survey of the Magellanic Clouds (SUMaC). I. Shape of the Ultraviolet Dust Extinction Law and Recent Star Formation History of the Small Magellanic Cloud , 2016, 1611.00064.

[40]  O. H. Ramírez-Agudelo,et al.  The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries , 2016, 1610.03500.

[41]  M. Moe,et al.  Mind Your Ps and Qs: The Interrelation between Period (P) and Mass-ratio (Q) Distributions of Binary Stars , 2016, 1606.05347.

[42]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[43]  Michal Pawlak,et al.  Period-luminosity-colour relation for early-type contact binaries , 2016, 1602.01467.

[44]  E. Gosset,et al.  Observational signatures of past mass-exchange episodes in massive binaries: The case of HD 149 404 , 2016, 1703.03247.

[45]  N. Langer,et al.  Rejuvenation of stellar mergers and the origin of magnetic fields in massive stars , 2016, 1601.05084.

[46]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[47]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[48]  H. Janka,et al.  CORE-COLLAPSE SUPERNOVAE FROM 9 TO 120 SOLAR MASSES BASED ON NEUTRINO-POWERED EXPLOSIONS , 2015, 1510.04643.

[49]  A. Herrero,et al.  DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING , 2015, 1509.08940.

[50]  G. Meynet,et al.  Massive star evolution in close binaries:conditions for homogeneous chemical evolution , 2015, 1508.06094.

[51]  C. Evans,et al.  Low-metallicity massive single stars with rotation. Evolutionary models applicable to I Zwicky 18 , 2015, 1506.09132.

[52]  N. Langer,et al.  Massive main sequence stars evolving at the Eddington limit , 2015, 1506.02997.

[53]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[54]  A. Bonanos,et al.  The VLT-FLAMES Tarantula Survey XIX. B-type Supergiants - Atmospheric Parameters and Nitrogen Abundances to Investigate the Role of Binarity and the Width of the Main Sequence , 2014, 1412.2705.

[55]  I. Negueruela,et al.  MY Camelopardalis, a very massive merger progenitor , 2014, 1410.5575.

[56]  P. Podsiadlowski,et al.  LUMINOUS BLUE VARIABLES AND SUPERLUMINOUS SUPERNOVAE FROM BINARY MERGERS , 2014, 1410.2426.

[57]  B. Mason,et al.  THE MULTIPLICITY OF MASSIVE STARS: A HIGH ANGULAR RESOLUTION SURVEY WITH THE HST FINE GUIDANCE SENSOR , 2014, 1410.0021.

[58]  O. Absil,et al.  SOUTHERN MASSIVE STARS AT HIGH ANGULAR RESOLUTION: OBSERVATIONAL CAMPAIGN AND COMPANION DETECTION , 2014, 1409.6304.

[59]  F. Soydugan,et al.  SX Aurigae: A close binary at the early stage of contact phase , 2014 .

[60]  D. Dale,et al.  TOWARD COMPLETE STATISTICS OF MASSIVE BINARY STARS: PENULTIMATE RESULTS FROM THE CYGNUS OB2 RADIAL VELOCITY SURVEY , 2014, 1406.6655.

[61]  K. Yakut,et al.  An interacting O + O supergiant close binary system: Cygnus OB2-5 (V729 Cyg) , 2014, 1402.3393.

[62]  P. Harmanec,et al.  The O-type eclipsing contact binary LY Aurigae – member of a quadruple system , 2013 .

[63]  G. Meynet,et al.  Close-binary evolution - I. Tidally induced shear mixing in rotating binaries , 2013, 1306.6731.

[64]  Harvard-Smithsonian CfA,et al.  Stellar Multiplicity , 2013, 1303.3028.

[65]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[66]  D. Vanbeveren,et al.  Blue supergiant progenitor models of type II supernovae , 2012, 1212.4285.

[67]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[68]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[69]  H. Zinnecker,et al.  A spectroscopic survey on the multiplicity of high-mass stars , 2012, 1205.5238.

[70]  E. Chatzopoulos,et al.  EFFECTS OF ROTATION ON THE MINIMUM MASS OF PRIMORDIAL PROGENITORS OF PAIR-INSTABILITY SUPERNOVAE , 2012, 1201.1328.

[71]  A. Bonanos,et al.  The VLT-FLAMES Tarantula Survey. II. R139 revealed as a massive binary system , 2011, 1103.5387.

[72]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[73]  S. Dougherty,et al.  Modelling the radio emission from Cyg OB2 #5: a quadruple system? , 2009, 0911.5674.

[74]  Russel J. White,et al.  A SURVEY OF STELLAR FAMILIES: MULTIPLICITY OF SOLAR-TYPE STARS , 2009, 1007.0414.

[75]  S. Smartt,et al.  The VLT-FLAMES Tarantula survey , 2009, Proceedings of the International Astronomical Union.

[76]  S. Stahler,et al.  Physics, Formation and Evolution of Rotating Stars , 2009 .

[77]  P. Eggleton,et al.  Towards multiple-star population synthesis , 2009, 0908.3694.

[78]  D. Zaritsky,et al.  THE STAR FORMATION HISTORY OF THE LARGE MAGELLANIC CLOUD , 2009, 0908.1422.

[79]  A. Maeder Physics, Formation and Evolution of Rotating Stars , 2009 .

[80]  S. D. Mink,et al.  Rotational mixing in massive binaries - Detached short-period systems , 2009, 0902.1751.

[81]  K. Stȩpień Large-scale circulations and energy transport in contact binaries , 2009, 0902.1063.

[82]  Y. Damerdji,et al.  A multiwavelength investigation of the massive eclipsing binary Cygnus OB2 #5 , 2008, 0812.3749.

[83]  D. Gies,et al.  Tomographic Separation of Composite Spectra. XI. The Physical Properties of the Massive Close Binary HD 100213 (TU Muscae) , 2008, 0905.3687.

[84]  K. Gazeas,et al.  Angular momentum and mass evolution of contact binaries , 2008, 0803.0212.

[85]  N. Langer,et al.  White dwarf spins from low mass stellar evolution models , 2008, 0802.3286.

[86]  T. Pribulla,et al.  Contact Binaries with Additional Components. III. A Search Using Adaptive Optics , 2007 .

[87]  G. García-Segura,et al.  The circumstellar medium around a rapidly rotating, chemically homogeneously evolving, possible gamma-ray burst progenitor , 2007, 0711.4807.

[88]  C. Ott,et al.  The Proto-Neutron Star Phase of the Collapsar Model and the Route to Long-Soft Gamma-Ray Bursts and Hypernovae , 2007, 0710.5789.

[89]  S. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[90]  S. Qian,et al.  Evolutionary states of the two shortest period O-type overcontact binaries V382 Cyg and TU Mus , 2007 .

[91]  A. Herrero,et al.  The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars , 2007, 0708.2042.

[92]  N. Langer,et al.  Pair creation supernovae at low and high redshift , 2007, 0708.1970.

[93]  R. Hilditch,et al.  Efficiency of mass transfer in massive close binaries - Tests from double-lined eclipsing binaries in the SMC , 2007, astro-ph/0703480.

[94]  G. Meynet,et al.  Wind anisotropies and GRB progenitors , 2007, astro-ph/0701494.

[95]  N. Langer,et al.  Single star progenitors of long gamma-ray bursts - I. Model grids and redshift dependent GRB rate , 2006, astro-ph/0606637.

[96]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[97]  Thomas G. Barnes,et al.  Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis in honor of David L. Lambert , 2005 .

[98]  P. Eggleton,et al.  Evolution of Close Binary Systems , 2005 .

[99]  N. Langer,et al.  Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts , 2005, astro-ph/0508242.

[100]  N. Langer,et al.  Which massive stars are gamma-ray burst progenitors? , 2005, astro-ph/0504175.

[101]  S. Woosley,et al.  Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields , 2004, astro-ph/0409422.

[102]  S. Selam Key parameters of W UMa-type contact binaries discovered by HIPPARCOS , 2004 .

[103]  U. Munari,et al.  Observational Studies of Early-Type Overcontact Binaries: TU Muscae , 2003, astro-ph/0309366.

[104]  Chris L. Fryer,et al.  How Massive Single Stars End Their Life , 2002, astro-ph/0212469.

[105]  R. Hilditch,et al.  Ten eclipsing binaries in the Small Magellanic Cloud: fundamental parameters and SMC distance , 2002, astro-ph/0210295.

[106]  C. Tout,et al.  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[107]  P. Kroupa The Initial Mass Function of Stars: Evidence for Uniformity in Variable Systems , 2002, Science.

[108]  P. Eggleton,et al.  A Complete Survey of Case A Binary Evolution with Comparison to Observed Algol-type Systems , 2000, astro-ph/0009258.

[109]  P. Ostrov Orbital solution for the MACHO*05:34:41.3–69:31:39 O3 If* +O6:V eclipsing binary system in the Large Magellanic Cloud , 2000, astro-ph/0009077.

[110]  C. Tout,et al.  Stellar evolution models for Z = 0.0001 to 0.03 (Pols+ 1998) , 1998 .

[111]  R. Hilditch,et al.  Light-curve analysis and eclipse mapping of the contact binaries KQ GEM and V412 HER , 1998 .

[112]  R. Hilditch,et al.  INTERACTING O-STAR BINARIES : V382 CYG, V448 CYG AND XZ CEP , 1997 .

[113]  Forrest J. Rogers,et al.  Updated Opal Opacities , 1996 .

[114]  P. Podsiadlowski,et al.  Presupernova Evolution in Massive Interacting Binaries , 1992 .

[115]  A. Linnell,et al.  Does SV Centauri harbor an accretion disk , 1991 .

[116]  R. Hilditch,et al.  On OB-type close binary stars , 1987 .

[117]  R. Hilditch,et al.  The massive near-contact binary system V348 Carinae (HD 90707) in IC 2581. , 1985 .

[118]  K. Leung,et al.  Revised UBV photometric solution of the early-type contact system BH Centauri , 1984 .

[119]  R. Webbink The Evolution of Low-Mass Close Binary Systems. V. Transport Processes in the Envelopes of Contact Components: Erratum , 1977 .

[120]  R. Ulrich,et al.  The accreting component of mass-exchange binaries , 1976 .

[121]  B. Flannery A Cyclic Thermal Instability in Contact Binary Stars , 1976 .

[122]  R. Webbink The evolution of low-mass close binary systems. I. The evolutionary fate of contact binaries , 1975 .

[123]  S. W. Mochnacki,et al.  A Model for the Totally Eclipsing W Ursae Majoris System AW UMa , 1972 .

[124]  A. Eddington Internal Circulation in Rotating Stars , 1929 .

[125]  R. Emden,et al.  The Internal Constitution of the Stars , 1927, Naturwissenschaften.

[126]  K. Schwarzschild,et al.  The Observatory , 1886 .

[127]  S. Qian,et al.  LY Aurigua: A mass-transferring O-type contact binary with a tertiary stellar companion , 2014 .

[128]  Z. Liying,et al.  Photometric Studies of Twelve Deep, Low-mass Ratio Overcontact Binary Systems , 2006 .

[129]  Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Formation of contact in massive close binaries , 2001 .

[130]  D. Vanbeveren,et al.  Massive stars , 1998 .

[131]  Achim Weiss,et al.  Stellar Structure and Evolution , 1990 .

[132]  John P. Cox,et al.  Principles of stellar structure , 1968 .

[133]  L. Lucy The Structure of Contact Binaries , 1968 .

[134]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[135]  H. Lamers,et al.  UvA-DARE ( Digital Academic Repository ) Mass-loss predictions for 0 and B stars as a fuction of metallicity , 2022 .

[136]  INFORMATION BULLETIN ON VARIABLE STARS , 2022 .