Applied Mathematics and Computation
暂无分享,去创建一个
Wen-Xiu Ma | Wei Xu | Yaning Tang | Liang Gao
[1] Yi Zhang,et al. The exact solutions to the complex KdV equation , 2007 .
[2] Wen-Xiu Ma,et al. Complexiton solutions of the Toda lattice equation , 2004 .
[3] Wen-Xiu Ma,et al. Wronskian solutions to integrable equations , 2009 .
[4] Wenxiu Ma,et al. A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation , 2009, 0903.5337.
[5] V. Matveev,et al. Positon-positon and soliton-positon collisions: KdV case , 1992 .
[6] Zhenya Yan. Multiple solution profiles to the higher-dimensional Kadomtsev–Petviashvilli equations via Wronskian determinant , 2007 .
[7] Wenxiu Ma. Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.
[8] Jianping Wu. N-soliton solution, generalized double Wronskian determinant solution and rational solution for a (2+1)-dimensional nonlinear evolution equation , 2008 .
[9] Abdul-Majid Wazwaz,et al. Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations , 2008, Appl. Math. Comput..
[10] Jie Ji,et al. The double Wronskian solutions of a non-isospectral Kadomtsev–Petviashvili equation , 2008 .
[11] Wen-Xiu Ma,et al. Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons , 2007 .
[12] J. Nimmo,et al. A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .
[13] J. Nimmo,et al. Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .
[14] Wenxiu Ma,et al. A second Wronskian formulation of the Boussinesq equation , 2009 .
[15] E. Zayed,et al. TRAVELING WAVE SOLUTIONS FOR HIGHER DIMENSIONAL NONLINEAR EVOLUTION EQUATIONS USING THE $(\frac{G'}{G})$- EXPANSION METHOD , 2010 .
[16] M. Jimbo,et al. Solitons and Infinite Dimensional Lie Algebras , 1983 .
[17] Wenxiu Ma,et al. Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.
[18] Xianguo Geng,et al. N-soliton solution and its Wronskian form of a (3+1)-dimensional nonlinear evolution equation , 2007 .